‘ ’l life.augmented

AN4989
Application note

STM32 microcontroller debug toolbox

January 2021

Introduction

STM32 end-users are sometimes confronted with non- or partially-functional systems during
product development. The best approach to use for the debug process is not always
obvious, particularly for inexperienced users.

To address the above concerns, this application note provides a toolbox describing the most
common debug techniques and their application to popular recommended IDEs for STM32
32-bit Arm® Cortex® MCUs. It contains detailed information for getting started as well as
hints and tips to make the best use of STM32 Software Development Tools in STM32

ecosystem.

This application note applies to the microcontrollers listed in Table 1.

Table 1. Applicable products

Type

Sub class

Microcontrollers

STM32 High Performance MCUs
STM32 Mainstream MCUs
STM32 Ultra Low Power MCUs

AN4989 Rev 3 1118

www.st.com

http://www.st.com

Contents AN4989

Contents
1 Forewordttt 8
1.1 General information 8
1.2 Software Versions 8
1.3 ACIONYMS . . 8
2 STM32 ecosystemoutlinescciiiiiiii... 9
2.1 Hardware developmenttools 9
211 Hardware kits e 9
21.2 ST-LINK probe e e 16
213 Alternative debuggerprobes 19
2.2 Software developmenttools L. 20
2.21 STM32CUbeMX 21
222 STM32CuUbelIDE 22
223 Partner IDEs 24
224 STM32CubeProgrammer 25
225 STM32CubeMonitor 27
2.3 Embedded software 28
24 Informationand sharing 29
241 Documentation 30
24.2 Wikiplatform e 31
243 Github ... 31
244 STCommunity 31
245 STM32 Education 32
3 Compilingfordebug i 33
3.1 Optimization 33
3.1.1 IAR™ EWARM . .. 34
3.1.2 Keil® MDK-Arm MVISION ..o 35
3.1.3 STM32CUubelDE 36
3.2 Debugging information 36
3.21 IAR™ EWARM e 37
3.2.2 Keil®-MDK-Arm pVision 38
3.2.3 STM32CubelDE 39

2/118 AN4989 Rev 3 ‘Yl

AN4989 Contents
4 Connectingtotheboard 40
41 SWD/TAG pinout e 40

4.2 Resetand connectionmode 42

4.21 Presentation e 42

422 IAR™ EWARM 43

4.2.3 Keil® MDK-Arm MVISION 44

424 STM32CubelDE 48

425 STM32CubeProgrammert 49

4.3 LOW-POWET CaSE . ..t ittt it e e 50

5 Breaking and steppingintocode 51
5.1 Debug support for timers, RTC, watchdog, BxCAN and 2C 51

5.2 Debug performance 51

5.21 IAR™ EWARM . .. 52

5.2.2 Keil® MDK-Arm MVISION 53

5.2.3 STM32CubelDE 54

5.3 Secure platform limitation L 55

5.31 RDP . 55

5.3.2 PCROP . 56

6 Exceptionhandling i i e 57
6.1 Default weak Handlers 57

6.2 CustomHandlers 58

6.3 Trapping div/0 exception i 60

6.3.1 Cortex®-MO/MO+ CaSEo'vee e 60

6.3.2 Cortex®-M3/4/7 CaSeoouiiii i 61

7 Printfdebugging s 68
71 STM32 Virtual COM portdriver 68

7.2 Printf via UART 69

7.3 Printf via SWO/SWV 71

7.4 Semihosting 79

741 IAR™ EWARM . .. 80

7.4.2 Keil® MDK-Arm MVISION 80

74.3 STM32CubelDE 81

‘Y_l AN4989 Rev 3 3/118

Contents AN4989

8 Debug through hardware exploration 87

8.1 Easy pinout probing with STMicroelectronics hardware kits 87

8.2 Microcontroller clock output (MCO) 87

8.2.1 Configuration with STM32CubeMX 87

822 HAL RCC_MCOCONIG ... veeee e 89

8.2.3 STM32 Series differences 90

9 Dual-Core microcontroller debugging 92

10 Fromdebugtorelease i iinnnn. 93

1" Troubleshooting i 94

Appendix A Managing DBGMCU registers.cciiinnn.. 95

A1 By software 95

A.2 Bydebugger 96

Appendix B Use Nucleo “cuttable” ST-LINK as stand-alone VCP.......... 106

Appendix C Managing various targets onthesamePC.................. 109

Appendix D Cortex®-M debug capabilities reminder 116

D.1 Application notesindex. 116

Revision history i i i i et ettt nnannnnnnns 117
41118 AN4989 Rev 3 1S7]

AN4989 List of tables

List of tables

Table 1. Applicable products 1
Table 2. ST-LINK software pack. e e 19
Table 3. STMicroelectronics documentation guide. 30
Table 4. STM32 Series RDP protectionextension. 56
Table 5. STM32 USART vs. PC terminal WordLengthexample. 71
Table 6. Troubleshooting 94
Table 7. STMS32 Series vs. debug capabilties 116
Table 8. STM32 Series vs. debug capabilities 116
Table 9. Document revision history 117

3

AN4989 Rev 3 5/118

List of figures AN4989

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.

6/118

STM32 €COSYSIEM OVEIVIEW. . . . ettt et e e e et 9
Developmenttools overview. 10
Nucleo-144, Nucleo-64 and Nucleo-32 boards. i, 10
STM32 Nucleo-144 Structure e e e e 11
Discovery board example e 12
EVAL board example 13
TX-NUCLEO-LPMOTA . e e e 14
ST-LINK, ST-LINK/V2, and ST-LINK/V2-ISOL stand-alone probes 16
STLINK-VBSET . . . o e 16
On-board ST-LINK-V3on Nucleo. e 17
STM32 software development 20
STM32CubeMX Configure and code generation 21
STM32CUbelDE e 22
STM32CuUbe programmeer. 26
STM32Cube moNitor. e 28
STM32CubeProjectList screenshot 29
Getconnected to STM32 world e 29
IAR™ EWARM Optimization option e 34
Keil® pVision Code Optimizationoption 35
STM32CubelDE optimization level setting 36
IAR™ EWARM Generate debug Informationoption. 37
Keil® Debug Information option 38
STM32CubelDE debug informationoption. 39
SWD pins PA13 and PA14 in Reset state under STM32CubeMX 40
SWD pins PA13 and PA14 in Reserved but inactive state

under STM32CUbeMX e 41
SWD pins PA13 and PA14 in Active State under STM32CubeMX. 41
Reset Mode in IAR8.10: screenshot. 43
Connect and Reset option Keil® . o 44
Keil® hotplug StEPT v oot e e e e e e e 45
Keil® hotplug StEP2 o o oo e e et e 46
Keil® hotplug StEP3 v e oo ettt e e 47
Select Generator Options ResetMode. 48
STM32CubeProgrammer Resetmode 49
STM32CubeProgrammer Connectionmode 49
IAR™ EWARM ST-LINK SWD Speed setting, 52
Keil® SWD Speed SEtiNG.o v v oo e e e e 53
Access to Generator Options in STM32CubelDEV2.0.0.......................... 54
Asking for Handler code generation e 58
Keil® Access to Show Caller Code in Contextual menu.ooueo.... 60
Cortex®-M3 SCB_CCRDescription e e 61
Cortex-M3 SCB_CFSR Description e e 61
IAR™ EWARM exceptionhandling 62
Keil® System Control and Configure. 63
Keil® FAUIt REPOMS o oo e et e e e e e e 64
STM32CubelDE SCB register acCess i e e e 65
Fault Analyzer in STM32CubelDE e 66
Virtual COM port on Windows® PC 68

AN4989 Rev 3 ‘Yl

AN4989 List of figures
Figure 48. USART Pinout configuration with STM32CubeMX. o ... 69
Figure 49. USART2 setting with STM32CubeMX 70
Figure 50. SWO Pin configuration with STM32CubeMX 72
Figure 51. Semihosting/SWO configuration with IAR™ EWARM 73
Figure 52. IAR™ EWARM SWO Clocksetting e 74
Figure 53. SWO configuration with Keil® . 75
Figure 54. Access to SWV in Keil® 75
Figure 55. Enable SWD in STM32CubelDE 77
Figure 56. Enable SWV ITM Data Console in STM32CubelDE. 78
Figure 57. Enable ITM stimulus Port 0 in STM32CubelDE 79
Figure 58. Start Trace button in STM32CubelDE 79
Figure 59. Semihosting configuration in IAR™ EWARM i 80
Figure 60. Properties for semihosting in STM32CubelDE- Source Location. 81
Figure 61. Properties for semihosting in STM32CubelDE- Librairies 82
Figure 62. Properties for semihosting in STM32CubelDE 82
Figure 63. Semihosting in STM32CubelDE — Debug configuration. 84
Figure 64. Semihosting in STM32CubelDE —Startup L. 85
Figure 65. Semihosting in STM32CubelDE —Run 86
Figure 66. MCO pin selection in STM32CubeMX 87
Figure 67. MCO alternate pin highlight exemple with LO73 88
Figure 68. MCO Multiplexer in STM32CubeMX Clock Configuration Pane. 89
Figure 69. STM32F4/F7 dual MCO capabilities. 91
Figure 70. DBMCU Register LL Library Functions. i 95
Figure 71. DBGMCU_CR HAL Library Functions i 96
Figure 72. Access to DBGMCU register with IAR™ EWARM i 97
Figure 73. EWARM C-SPY® Macro script Settingoiuie .. 98
Figure 74. Accessing DBGMCU register in Keil® MDK-Arm pVision (1/2).o oo 99
Figure 75. Accessing DBGMCU register in Keil® MDK-Arm pVision (2/2)) 100
Figure 76. Keil® Initialization scriptsetting. 101
Figure 77. Access to Generator Options in STM32CubelDEV2.0.0........... 102
Figure 78. Generator Options debug MCU in STM32CubelDE. 103
Figure 79. Access to DBGMCU settings with STM32CubelDEV1.3.0 104
Figure 80. Runtime R/W access to DBGMCU register with SSTM32CubelDE 105
Figure 81. ST-LINK cuttable partof Nucleo. 106
Figure 82. Using ST-LINK stand-alone part of Nucleo-L476RGasVCP 107
Figure 83. Virtual COM porton PCside 108
Figure 84. STM32CubeProgrammer target selection pick list 109
Figure 85. Getting target ST-LINK S/N fromtheconsole. 110
Figure 86. IAR™ EWARM Debug Probe Selection pop-up window 110
Figure 87. IAR™ EWARM Debug Probe Selection with nickname 111
Figure 88. Probe selection prompt settingon IAR™ EWARM. 111
Figure 89. Keil® ST-LINK SEleCtion\t 112
Figure 90. Error message for multiple ST-LINK detected in STM32CubelDE 113
Figure 91. Forcing specific ST-LINK S/N with STM32CubelDE with OpenOCD option. 114
Figure 92. Forcing specific ST-LINK S/N with STM32CubelDE with ST-LINK GDB server. 115
Kys AN4989 Rev 3 7/118

Foreword AN4989

1 Foreword

1.1 General information
This document applies to STM32 32-bit Arm® Cortex® MCUs.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or
elsewhere.

1.2 Software versions

The various examples in this application note are illustrated on basis of the following
versions of the tools:

e |AR™ EWARM: Vv8.32.3

e Keil® MDK-Arm pVision: V5.26

e STM32CubelDE: V1.3.0

e STM32CubeProg: V221
1.3 Acronyms

e AN: Application note

e CMSIS: Cortex microcontroller software interface standard
e HAL: Hardware abstraction layer (software library)
e |DE: Integrated development environment

e JTAG: Joint Test Action Group

e MCO: Microcontroller clock output

e MCU: Microcontroller unit

e NVIC: Nested vector interrupt controller

e PM: Programming manual

e RM: Reference manual

e SB: Solder bridge

e SWD: Serial wire debug

e SWO: Single wire output

e SWV: Single wire viewer

e VCP: Virtual COM port

3

8/118 AN4989 Rev 3

AN4989

STM32 ecosystem outlines

2

2.1

211

3

STM32 ecosystem outlines

STMicroelectronics and its partners are providing a full hardware and software ecosystem to
support rapid evaluation, prototyping, and productizing of complete systems using STM32
microcontrollers.

As presented in Figure 1, the ecosystem is composed of all the collaterals required to
develop a project with STM32.

Figure 1. STM32 ecosystem overview

Hardware Development Software Development
Tools Tools
Open source

Evaluation boards
Debug and Programming Probes

Embedded Software

Drivers
RTOS
Stacks and Application Bricks

Configuration Tools
Development & Debugging Tools
Monitoring Tools

Ecosystem

Information and sharing

Web site
Product selectors
Communities & Social Media

Partners

ST-designed

This chapter provides a global overview of the main elements composing the ecosystem,
outlining debug features and useful pointers, in order to guide the user among available
resources.

Hardware development tools

This section introduces the range of available development tools from hardware kits to ST-
LINK probes and alternative debugger interfaces.

Hardware kits

This section lists the hardware kits provided by STMicroelectronics for STM32-based
development:

e Nucleo boards

o Discovery kits

e Evaluation boards (EVAL)

e STM32 Nucleo expansion

e Third-party boards

AN4989 Rev 3 9/118

STM32 ecosystem outlines AN4989

Figure 2. Development tools overview

Full feature
evaluation functionaliti

STM32 Nucleo

STM32 Nucleo boards are affordable solutions for user willing to try out new ideas and to
quickly create prototypes based on STM32 MCU.

Figure 3. Nucleo-144, Nucleo-64 and Nucleo-32 boards

STM32 Nucleo boards feature the same connectors. They can easily be extended with a
large number of specialized application hardware add-ons.

Note: Nucleo-144 boards include ST Zio connector, which is an extension of ARDUINO® Uno
rev3, and ST morpho connector.

Nucleo-68 board and Nucleo-64 boards include ARDUINO® Uno rev3 and ST morpho
connectors.

Nucleo-32 boards include ARDUINO® Nano connectors.

)

10/118 AN4989 Rev 3

AN4989

STM32 ecosystem outlines

3

All STM32 Nucleo boards integrate an ST-LINK debugger/programmer, so there is no need
for a separate probe.

The figure below shows an example of STM32 Nucleo structure

Figure 4. STM32 Nucleo-144 structure

B = Flexible board power supply:
**lfla—?-‘:lmﬁ":l;;' A through USB or external source

Lwrg T - . ™

One STM32 MCU flavor with 144 pins

Arduino Uno & ST Zio connectors:
easy access to add-ons

ST morpho extension pins:
direct access to all MCU 1/Os

Ethernet & USB OTG (optional) J

A complete description of the embedded ST-LINK features is provided in Section 2.1.2: ST-
LINK probe on page 16. Additional information and access to Nucleo boards complete
documentation sets are available at www.st.com.

AN4989 Rev 3 11/118

http://www.st.com

STM32 ecosystem outlines AN4989

Discovery kits

STM32 Discovery kits are a cheap and complete solution for the evaluation of the

outstanding capabilities of STM32 MCUs. They carry the necessary infrastructure for
demonstration of specific device characteristics, the HAL library, and comprehensive
software examples allow to fully benefit from the devices features and added values.

Figure 5. Discovery board example

I-Illl--llll.t_l-l..! ':'
3}

3
, B AR

Extension connectors give access to most of the device's I/Os and make the connection of
add-on hardware possible.

With the integrated debugger/programmer the Discovery kits are ideal for prototyping.

A complete description of the embedded ST-LINK features is provided in Section 2.1.2: ST-
LINK probe on page 16. Additional information and access to Discovery kits complete
documentation sets are available at www.st.com.

3

12/118 AN4989 Rev 3

http://www.st.com

AN4989 STM32 ecosystem outlines

Evaluation boards

STM32 MCU EVAL boards have been designed as a complete demonstration and
development platform for the Arm® Cortex® STM32 MCUs.

Figure 6. EVAL board example

They carry external circuitry, such as transceivers, sensors, memory interfaces, displays
and many more. The EVAL boards can be considered as a reference design for application
development.

EVAL boards have integrated ST-LINK (USB Type-B connector). For complete description
of the embedded ST-LINK features refer to Section 2.1.2: ST-LINK probe.

EVAL board has direct access to JTAG/Traces signal through dedicated Arm® JTAG 20-pin
connector allowing advanced debug (ETM). For usage of ETM traces refer to Section 2.1.3:
Alternative debugger probes on page 19.

The usage of a stand-alone probe may require some jumper and solder bridge adaptation
from default. Refer to the specific board user manual.

For further information and access to complete documentation visit
www.st.com/stm32evaltools.
STM32 nucleo expansion

STM32 Nucleo expansion boards carry all the required components to Evaluate ST devices
to be used together with an STM32 MCU.

Build STM32-based applications leveraging functionality and performance of ST's device
portfolio.

The expansion boards are equipped with standardized interconnections, such as an
ARDUINO Uno R3 connector, or a Morpho connector for a higher level of connectivity

Each expansion board is supported by STM32-based software modules.

The combination of STM32 Nucleo boards and expansion boards is a unified scalable
approach with unlimited possibilities for application development, prototyping or product
evaluation.

3

AN4989 Rev 3 13/118

STM32 ecosystem outlines AN4989

X-NUCLEO-LPMO1A

This board is an example of STM32 nucleo expansion.

Figure 7. 7X-NUCLEO-LPMO1A

The X-NUCLEO-LPMO1Ais a 1.8 V to 3.3 V programmable power supply source with
advanced power consumption measurement capability.

It performs consumption averaging (static measurement up to 200 mA) as well as real-time
analysis (dynamic measurement up to 50 mA with 100 kHz bandwidth).

The X-NUCLEO-LPMO1A operates either in standalone mode (using its LCD, joystick and
button to display static measurements), or in controlled mode connected to host PC via

USB (using the STM32CubeMonPwr software tool with its comprehensive graphical user
interface).

It can be used to supply and measure the consumption of STM32 Nucleo-32, Nucleo-64,
Nucleo-68 or Nucleo-144 boards, using ARDUINO connectors.

Alternatively, it supplies and measures the consumption of any target connected by wires
via the basic connector.

14/118 AN4989 Rev 3

3

AN4989

STM32 ecosystem outlines

3

KEY FEATURES

STM32L496VGT6 microcontroller featuring Arm® Cortex®-M4 core at 80 MHz / 100
DMIPS and three 12-bit ADC at 5 Msps

Programmable voltage source from 1.8 V1o 3.3V

Static current measurement from 1 nA to 200 mA

Dynamic measurements:

— 100 kHz bandwidth, 3.2 Msps sampling rate

— Current from 100 nA to 50 mA

— Power measurement from 180 nW to 165 mW

— Energy measurement computation by power measurement time integration
— Execution of EEMBC ULPMark™ tests

Mode standalone:

— Monochrome LCD, 2 lines of 16 characters with backlight
— 4-direction joystick with selection button

— Enter and Reset push-buttons

Mode controlled:

— Connection to a PC through USB FS Micro-B receptacle
— Command line (Virtual COM port) or

— STM32CubeMonitor-Power PC tool.

Four status LEDs

Target board connectors:

— ARDUINO® Uno and Nano connectors

— Basic connector (white): 4 wires

Flexible input power-supply options:

— USB Micro-B (VBUS)

— External power connector (7 V to 10 V)

— ARDUINO Uno and Nano connectors (pin 5 V)

AN4989 Rev 3 15/118

STM32 ecosystem outlines AN4989

21.2 ST-LINK probe

The ST-LINK is the JTAG/Serial Wire Debug (SWD) interface used to communicate with any
STM32 microcontroller located on an application board.

It is available as:
e Stand-alone in-circuit debugger
e Embedded in all STM32 hardware kits (Nucleo boards, Discovery kits, EVAL boards)

ST-LINK/V2 and ST-LINK-V3 are the main used versions.
Figure 8 shows ST-LINK/V2 and ST-LINK/V2- ISOL stand-alone probes on the right.

Figure 8. ST-LINK, ST-LINK/V2, and ST-LINK/V2-ISOL stand-alone probes

g

_ZA

Figure 9 shows the last STLINK-V3SET version.

Figure 9. STLINK-V3SET

3

16/118 AN4989 Rev 3

AN4989 STM32 ecosystem outlines

Figure 10 shows an example of an embedded ST-LINK/V2 as part of a Nucleo board.

Figure 10. On-board ST-LINK-V3 on Nucleo

¥

00000000000000000000000000k

3

AN4989 Rev 3 17/118

STM32 ecosystem outlines AN4989

Note:

18/118

ST-LINK/V2 basic features

5V power supplied by a USB connector

USB 2.0 full-speed-compatible interface

USB standard Type-A to Mini- B cable
JTAG/serial wire debug (SWD) specific features:

— 1.65Vto 3.6 V application voltage supported on the JTAG/SWD interface and 5 V
tolerant inputs

— JTAG cable for connection to a standard JTAG 20-pin pitch 2.54 mm connector
— JTAG supported

— SWD and serial wire viewer (SWV) communication supported

Device Firmware Upgrade (DFU) feature supported

Status LED which blinks during communication with the PC

Operating temperature 0 °C to 50 °C

1000 V rms high-isolation voltage (ST-LINK/V2-ISOL only)

Embedded versions usually supports the following additional features:

Virtual COM port interface on USB. (VCP)
Mass storage interface on USB

The availability of these additional features depends on software version.

ST-LINK-V3 basic features

Stand-alone probe with modular extensions

Self-powered through a USB connector (Micro-B)

USB 2.0 high-speed compatible interface

Direct firmware update support (DFU)

JTAG / serial wire debugging (SWD) specific features:

— 3V to 3.6V application voltage support and 5 V tolerant inputs

— Flat cables STDC14 to MIPI10 / STDC14 / MIPI20 (connectors with 1.27 mm
pitch)

— JTAG communication support

— SWD and serial wire viewer (SWV) communication support

Virtual COM port (VCP) specific features:

— 3V to 3.6V application voltage support on the UART interface and 5 V tolerant
inputs

— VCP frequency up to 15 MHz

— Available on STDC14 debug connector (not available on MIPI10)

Multi-path bridge USB to SPI/UART/I2C/CAN/GPIOs specific features:

— 3V to 3.6V application voltage support and 5 V tolerant inputs

— Signals available on adapter board only (MB1440)

Drag-and-drop flash programming of binary files

Two-color LEDs: communication, power

The STLINK-V3SET product does not provide power supply to the target application.

AN4989 Rev 3 ‘Yl

AN4989

STM32 ecosystem outlines

Note:

Note:

21.3

3

In order to identify the ST-LINK version on a board and the related features associated with
it, please refer STMicroelectronics technical note Overview of the ST-LINK embedded in
STM32 MCU Nucleo, Discovery Kits and Eval Boards (TN1235).

On-board ST-LINK does not support JTAG port.

For Nucleo and Discovery, JTAG port signal can be wired through Morpho / ARDUINO®
connectors. On EVAL boards, there is a dedicated 20-pin connector.

The use of ST-LINK requires the software packages listed in Table 2.

Table 2. ST-LINK software pack

Part Number Description

STSW-LINKOO7 ST-LINK, ST-LINK/V2, ST-LINK/V2-1, STLINK-V3 boards firmware upgrade

ST-LINK, ST-LINK/V2, ST-LINK/V2-1 USB driver signed for Windows® 7,

STSW-LINKOO9 Windows® 8, Windows® 10

STLINK-V3-BRIDGE | Software API compatible with the bridge interface of STLINK-V3

STSW-LINKOO7 is included in STSW-LINK004.

STSW-LINKOO9 is included in most IDE installation packages (IAR Systems®, Keil®,
STM32CubelDE) and tools.

Tip: It is recommended to use the latest firmware version of the on-board ST-LINK
interface.
Firmware upgrade can be performed thanks to the STM32CubeProgrammer (refer
to Section 2.2.4: STM32CubeProgrammer) or STM32CubelDE.

Alternative debugger probes

J-LINK (Segger), I-Jet™ (IAR Systems®), and U-LINK (Keil®) are the most common
alternatives providing features equivalent to the ones provided by ST-LINK.

For most advanced debugging needs, requiring heavy traffic or ETM port tracing, ST
recommends using:

e U-Link Pro in combination with Keil® MDK-Arm MVISION
. I-Jet™ Trace in combination with IAR™ EWARM

For a complete catalog of solutions, refer to www.st.com.

AN4989 Rev 3 19/118

http://www.st.com

STM32 ecosystem outlines AN4989

2.2

20/118

Software development tools

The STM32 family of 32-bit Arm® Cortex®-M core-based microcontrollers is supported by a
complete range of software tools.

It encompasses traditional integrated development environments - IDEs with C/C++
compilers and debuggers from major third parties that are complemented with tools from ST
allowing to configure and initialize the MCU or monitor its behavior in run time.

It offers a complete flow, from configuration up to monitoring as illustrated in Figure 11.

Figure 11. STM32 software development

@ STM32 Software Development Tools

@IAR | [armeei || DCH i
&) s ®
- uperrogrammer
BEERS
Yy FREE STMSQ.'
ExlPABG] | e CubeMonitor

s ~
sTM32 U sTM32 U

CubeMX CubelDE Wx;?

Configure Compile and Debug Monitor, Program
& Generate Code IDEs & Utilities

Performance and debuggers p
Utilities p

3

AN4989 Rev 3

AN4989 STM32 ecosystem outlines

2.21 STM32CubeMX

Figure 12. STM32CubeMX Configure and code generation

macO5® is a trademark of Apple Inc., registered in the LS. and other countries.
A um Windows -
o
Initialization code
Embedded software for STM32 § m W™
Examples and demos
Middleware components
Hardware abstraction layer
Available for all STM32 MCUs and MPUs
‘STM32L Series STM32F Series STM326G Series STM32H Series STM32W Series STM32ZMP Series
D L1 L4 4+ LS FOo F1 F2 F3 M4 FI Go G4 KT WB WL MP1*
Nota :* available for Cortex-Md side only

STM32CubeMX is a graphical tool that allows to easily configure STM32 microcontrollers
and to generate the corresponding initialization C code through a step-by-step process.

The first step consists in selecting the STM32 microcontroller that matches the required set
of peripherals. MCU can be selected as stand-alone for custom PCB (MCU Selector) or pre-
integrated into one of STMicroelectronics hardware kit (Board Selector)

In the second step, the user must configure each required embedded software thanks to a
pinout-conflict solver, a clock-tree setting helper, a power-consumption calculator, and a
utility performing MCU peripheral configuration (GPIO, USART, and others) and middleware
stacks (USB, TCP/IP, and others).

Finally, the user launches the generation of the initialization C code based on the selected
configuration. This code is ready to be used within several development environments. The
user code is kept at the next code generation.

Key features

e Intuitive STM32 microcontroller selection
e Rich graphical user interface configuration:
— Pinout with automatic conflict resolution
— Clock tree with dynamic validation of configuration

— Peripherals and middleware functional modes and initialization with dynamic
validation of parameter constraints

— Power consumption calculation for a user-defined application sequence

e C code project generation covering STM32 microcontroller initialization compliant with
IAR Systems®, Keil® and GCC compilers.

e Available as a standalone software running on Windows®, Linux®, and macOS®
operating systems, or through Eclipse plug-in

3

AN4989 Rev 3 21118

STM32 ecosystem outlines AN4989

2.2.2 STM32CubelDE

STM32CubelDE is an all-in-one multi-OS development tool, which is part of the
STM32Cube software ecosystem.

Figure 13. STM32CubelDE

All-in-one STM32 development tool

frueS T UM S 1TMS

-

Lys

STM32CubelDE is an advanced C/C++ development platform with peripheral configuration,
code generation, code compilation, and debug features for STM32 microcontrollers. It is
based on the Eclipse®/CDT framework and GCC toolchain for the development, and GDB
for the debugging. It allows the integration of the hundreds of existing plugins that complete
the features of the Eclipse® IDE. STM32CubelDE integrates all STM32CubeMX
functionalities to offer all-in-one tool experience and save installation and development time.
After the selection of an empty STM32 MCU or MPU, or preconfigured microcontroller from
the selection of a board, the project is created, and initialization code generated. At any time
during the development, the user can return to the initialization and configuration of the
peripherals or middleware and regenerate the initialization code with no impact on the user
code. STM32CubelDE includes build and stack analyzers that provide the user with useful
information about project status and memory requirements. STM32CubelDE also includes
standard and advanced debugging features including views of CPU core registers,
memories, and peripheral registers, as well as live variable watch, Serial Wire Viewer
interface, or fault analyzer.

3

22/118 AN4989 Rev 3

AN4989 STM32 ecosystem outlines

Key features

e Integration of STM32CubeMX that provides services for:
— STM32 microcontroller selection
— Pinout, clock, peripheral, and middleware configuration
— Project creation and generation of the initialization code

e Basedon Ec/ipse®/CDT, with support of Eclipse® add-ons, GNU C/C++ for Arm®
toolchain and GDB debugger

e Additional advanced debug features including:
— CPU core, peripheral register, and memory views
— Live variable watch view
— System analysis and real-time tracing (SWV)
— CPU fault analysis tool
e Support of ST-LINK (STMicroelectronics) and J-Link (SEGGER) debug probes

e Import project from Atollic® TrueSTUDIO® and AC6 System Workbench for STM32
(STM32CubelDE)

e Multi-OS support: Windows®, Linux®, and macOS®, 64-bit versions only

3

AN4989 Rev 3 23/118

STM32 ecosystem outlines AN4989

2.2.3

24/118

Partner IDEs

In this application note, all topics are declined for the three main IDEs:
1. IAR™ EWARM
2. Keil® MDK-Arm pVISION

IAR™ EWARM

The IAR Embedded Workbench® for Arm® (IAR™ EWARM) is a software development
suite delivered with ready-made device configuration files, flash loaders and 4300 example
projects included. IAR Systems® and STMicroelectronics closely cooperate in supporting
32-bit Arm® Cortex®-M based microcontrollers.

Key Features

e Key components:
— Integrated development environment with project management tools and editor
— Highly optimizing C and C++ compiler for Arm®
— Automatic checking of MISRA C rules (MISRA C:2004)
- Arm® EABI and CMSIS compliance
— Extensive HW target system support
— Optional I-jet™ and JTAGjet™-Trace in-circuit debugging probes
— Power debugging to visualize power consumption in correlation with source code
— Run-time libraries including source code
— Relocating Arm® assembler
— Linker and librarian tools

- C-SPY® debugger with Arm® simulator, JTAG support and support for RTOS-
aware bugging on hardware

— RTOS plugins available from IAR Systems® and RTOS vendors
— Over 3100 sample projects for EVAL boards from many different manufacturers
— User and reference guides in PDF format
— Context-sensitive on-line help
e Chip-specific support:
— 4300 example projects included for STMicroelectronics EVAL boards
Support for 4 Gbyte applications in Arm® and Thumb® mode
Each function can be compiled in Arm® or Thumb® mode
VFP Vector Floating Point co-processor code generation
e Intrinsic NEON™ support
e ST-LINK and ST-LINK/V2 support

This product is supplied by a third party not affiliated to ST. For the latest information on the
specification, refer to the IAR Systems® web site at http://www.iar.com.

3

AN4989 Rev 3

AN4989

STM32 ecosystem outlines

224

3

Keil® MDK-Arm pVision

The MDK-Arm-STM32 is a complete software development environment for Cortex®-M
microcontroller-based devices. It includes the pVision IDE/Debugger, Arm®C/C++ compiler
and essential middleware components. The STM32 peripherals can be configured using
STM32CubeMX and the resulting project exported to MDK-Arm.

Free MDK-Arm licenses can be activated for both STM32F0 and STM32L0 Series using the
following Product Serial Number (PSN): U1E21-CM9GY-L3GA4L.

This product is supplied by a third party not affiliated to ST. For the latest information on the
specification refer to the third party's website: http://www2.keil.com/stmicroelectronics-
stm32.

Key Features

e Complete support for Cortex®-M devices

e AmM®C/C++ compilation toolchain

e uVision IDE, debugger and simulation environment

e CMSIS Cortex® Microcontroller Software Interface Standard compliant
e ST-LINK support

e Multi-language support: English, Chinese, Japanese, Korean

STM32CubeProgrammer

STM32CubeProgrammer (STM32CubeProg) is an all-in-one multi-OS software tool for
programming STM32 products.

It provides an easy-to-use and efficient environment for reading, writing and verifying device
memory through both the debug interface (JTAG and SWD) and the bootloader interface
(UART, USB DFU, I2C, SPI, and CAN). STM32CubeProgrammer offers a wide range of
features to program STM32 internal memories (such as Flash, RAM, and OTP) as well as
external memories. STM32CubeProgrammer also allows option programming and upload,
programming content verification, and programming automation through scripting.
STM32CubeProgrammer is delivered in GUI (graphical user interface) and CLI (command-
line interface) versions.

AN4989 Rev 3 25/118

STM32 ecosystem outlines AN4989

Key Features

Erases, programs, views and verifies the content of the device Flash memory
Supports Motorola S19, Intel HEX, ELF, and binary formats

Supports debug and bootloader interfaces:

— ST-LINK debug probe (JTAG/SWD)

— UART, USB DFU, I2C, SPI, and CAN bootloader interfaces

Programs, erases and verifies external memories, with examples of external Flash
loaders to help users to develop loaders for specific external memories

Automates STM32 programming (erase, verify, programming, configuring option bytes)
Allows OTP memory programming

Supports the programming and configuring of option bytes

Offers a command-line interface for automation through scripting

ST-LINK firmware update

Enables secure firmware creation using the STM32 Trusted Package Creator tool
Supports OTA programming for the STM32WB Series

Multi-OS support: Windows, Linux, macOS®

Figure 14. STM32Cube programmer

Q00®

STM32CubeProgrammer - [m] X

S RO vy = Lyy

Memory & File edition Not connected
Device memory| Open file +

Add... A Data w... e Find D... 0x

No data to display

Log Verbosity level

16:45:09 : STM32CubeProgrammer APT v2.5.
16:45:09 : ST-LINK error (DEV_CONNECT_ERR)

26/118

3

AN4989 Rev 3

AN4989

STM32 ecosystem outlines

2.2.5

3

STM32CubeMonitor

The STM32CubeMonitor family of tools helps to fine-tune and diagnose STM32 applications
at run-time by reading and visualizing their variables in real-time. In addition to specialized
versions (power, RF, USB-PD), the versatile STM32CubeMonitor provides a flow-based
graphical editor to build custom dashboards simply, and quickly add widgets such as
gauges, bar graphs and plots. With non-intrusive monitoring, STM32CubeMonitor preserves
the real-time behavior of applications, and perfectly complements traditional debugging
tools to perform application profiling.

With remote monitoring and native support for multi-format displays, STM32CubeMonitor
enables users to monitor applications across a network, test multiple devices
simultaneously, and perform visualization on various host devices such as PCs, tablets, or
mobile phones. Moreover, with the direct support of the Node-RED® open community,
STM32CubeMonitor allows an unlimited choice of extensions to address a wide diversity of
application types.

Key Features

e Graphical flow-based editor with no programming needed to build dashboards
e Connects to any STM32 device via ST-LINK (SWD or JTAG protocols)

e Reads and writes variables on-the-fly from and to the RAM in real time while the target
application is running

e Parses debugging information from the application executable file
e Direct acquisition mode or snapshot mode

e Trigger to focus on application behaviors of interest

e Enables to log data into a file and replay for exhaustive analysis

e Delivers customized visualization with configurable display windows (such as curves
and boxes) and a large choice of widgets (such as gauges, bar graphs and plots)

e Multi-probe support to monitor multiple targets simultaneously

e Remote monitoring with native support of multi-format displays (PCs, tablets, mobile
phones)

e Direct support of the Node-RED® open community
e Multi-OS support: Windows®, Linux® Ubuntu® and macOS®

AN4989 Rev 3 271118

[Design - STM32CubeMonitor - o X
» ." —
STM3? == DEPLOY (Z'DASHBOARD =
CubeMonitor
Q Flow 1 Basic_Flow Advanced Flow Ul Butons + = | iinfo i [l v
~ S§TMicroelectronics ~ Information
Node "fiba7ed d1aces”
‘ START Acquisition Name myProbe_out
! | N S W) e e
‘ I @ direct @ 020 connected (STMI2L4Tx048%x) shew mere <
STOP Acquisition
v Description
te s
Allow to define and/or select a probs
“ 1 B low to define and/or select a probe
2 configuration (probe name, protocol and
8 p2p connected (STM32L4TX48xx) @ processing on frequency), open and close the connection
~ subflows and send commands to the selected probe
P — gauge
(U= Singlevalue () Clear Graphs =
¥ v P v Properties
probe Config probe configuration
v function
This property allows to define and/or
select a probe configuration (probe name.
a function () rotocol and frequency)
e E—— pi q ¥)
¢ pR—— The @ bution could be used 1o identity
Q switch (o]
JE— the connected probe by making its LED
o hange () blinked
L Saeng) J
£ T Name sting | ™
Q range () B2
“5 template \;‘
STS—
[delay O
n b L v
Q tigger O »
aly =ol+

2.3

28/118

Embedded software

The STM32Cube embedded software libraries provides:

e The HAL hardware abstraction layer, enabling portability between different STM32
devices via standardized API calls

e The Low-Layer (LL) APls, a light-weight, optimized, expert oriented set of APIs
designed for both performance and runtime efficiency

e Acollection of Middleware components, like RTOS, USB library, file system, TCP/IP
stack, Touch sensing library or Graphic Library (depending on the MCU series)

e Acomplete set of code examples running on STMicroelectronics boards: STM32
Nucleo, Discovery kits and EVAL boards

Tip: There is a fair chance that a Cube Project example matches the project in design.
At project start or if an issue is met, it is worth browsing the complete project list
package content available in
CubelLibraryFolder\Projects\ STM32CubeProjectsList.html (refer to Figure 16).

AN4989 Rev 3

3

AN4989 STM32 ecosystem outlines

Figure 16. STM32CubeProjectList screenshot

LPUART_WakeUpFromStop C(mflguratmn of an LPUART to wake up the MCU from Stop mode when a given B
stimulus is received.

UART_HyperTerminal_DMA UART transrmissi\)n (t@nsmiﬂr&ceive) in DMA mode between a board and an ~ X
HyperTerminal PC application.

UART_LowPower_HyperTerminal_DMA LPUART trarnsmlssinn (qusmit/rel:eive) in DMA mode between a board and an X -
HyperTerminal PC application.

UART_Printf Re-routing of the C library printf function to the UART. X | X |

UART

UART_TwoBoards_ComDMA UART transmission (transmit/receive) in DMA mode between two boards. = =

UART_TwoBoards_ComIT UART transmission (transmit/receive) in Interrupt mode between two boards. = =

UART_TwoBoards_CompPolling UART transmission (transmit/receive) in Polling mode between two boards. = =

UART_WakeUpFromStop Conflguraﬁiun Df an UART to wake up the MCU from Stop 1 mode when a given . -
stimulus is received.

24 Information and sharing

STMicroelectronics offers a very complete and wide range of solution on the web to get
connected to STM32 World.

Figure 17. Get connected to STM32 world

st.com E» ST MCU Finder n community.st.com

facebook.com/stm32

youtube.com/STonlineMedia

twitter.com/@ST_World

linkedin.com/stmicroelectronics
21IC

m & macOs™ _ o .

YouKu

3
o]
a
m
@
Q

Wiki

Information MCU Selection

Social Media

Community

3

AN4989 Rev 3 29/118

STM32 ecosystem outlines

AN4989

241 Documentation
Several types of documentation are available on www.st.com. Table 3 provides a reminder
of the main technical documents with a short description of their contents.
Table 3. STMicroelectronics documentation guide
Acronym Name Content
DB Data Brief Preliminary Product Specification before complete maturity
Product Specifications, Hardware feature and Electrical Characteristics
DS Data sheet (Pinout/Alternate function definition table, Memory Map, Electrical
Characterization etc.)
How to use the targeted microcontroller series, memory and
RM Reference manual . . .
peripherals.(registers details, default/reset value etc.)
L “How to make” guide helping to achieve a specific application with the
AN Application note targeted MCU.
UM User manual How To Use” guide for a specific software of hardware product (board,
software tools etc.)
™ Technical note Very brief document addressing single technical aspect. Can be seen as a
complement of AN or UM documents
ES Errata sheet Contained known issues and device limitation.
Target software developer with a full description of the STM32 Cortex®-M
PM Programmer manual
processor programming model, instruction set and core peripherals
It describes new features, known limitations and corrections on a specific
RN Release note software release for an evaluation board, a reference design, a software or

programming or debugging tool.

30/118

Tip: The MCU Finder application can be useful for document access and
bookmarking in addition to its primary usage for identifying the U
suitable STM32 product. The MCU Finder application is available for
use on PC, smartphone, and tablet. More information is available on , ‘-,7
www.st.com.

Trick: When an Internet search engine is used to get access to STMicroelectronics

documents, it is advised to search with an explicit mention of STMicroelectonics
web site so that references to genuine documents are obtained. In the Google

Toolbar™ search bar, the following syntax can be used:
“[Document reference or key word]” site:www.st.com filetype:pdf

AN4989 Rev 3

3

http://www.st.com
http://www.st.com
http://www.st.com

AN4989

STM32 ecosystem outlines

2.4.2

Note:

243

244

3

Wiki platform

STMicroelectronics offers the wiki platform to help developers to use its STM32 devices.

This user guide aims at assisting developers to use STM32 MCU devices from
STMicroelectronics.

It contains articles to discover STM32 MCUs, as well as examples and helps:

e The Getting started to easily start with an STM32 MCU board in

e The Development zone to help developing applications and share projects
e The Software tools zone for a first contact with the tools

e The Training zone to get trained on STM32 MCUs

The home page of wiki is https://wiki.st.com/stm32mcu/index.php/

Two wiki spaces are currently proposed: one dedicated to STM32 Microcontroller (MCU)
products and one for STM32 Microprocessor (MPU) products.
The focus of this application note is on the those dedicated to STM32 microcontrollers.

Github

STMicroelectronics is now publishing STM32Cube embedded software on GitHub, the
popular cloud-based service. The aim is to open up the STM32 integrated software offering
to collaborative and community-friendly development and take advantage of faster and
more efficient distribution of updates.

Publishing all STM32Cube original code through GitHub lets users of more than 1000
STM32 Arm® Cortex®-M microcontroller variants and heterogeneous Cortex-M/-A
microprocessors to easily store, manage, track, and control their code. GitHub features
such as Pull requests promote co-development, enabling the community to propose
alternate solutions and new features taking advantage of GitHub’s change-handling
structures. In addition, GitHub Issues - the privileged communication channel between
developers - lets users submit problems, share solutions, and contribute to fixes.

The move to GitHub also ensures that the developers can receive all software updates as
soon as they are published, more quickly than traditional means of updating MCU
packages.

All current STM32Cube MCU packages are already online, as well as hardware abstraction
layer (HAL) code and MCU-independent CMSIS drivers. The remaining STM32Cube
embedded-software components will be added over the coming months.

All STM32Cube embedded software on GitHub is available free of charge. Please visit
https://github.com/STMicroelectronics for more information or to get started.

ST Community

STMicroelectronics new community is now live and ready for receiving questions, sharing
projects and collaborating among fellow community members. The focus is on collaboration
because the primary purpose of this community is to share with peers and help them in a
transparent way that showcases the world of STMicroelectronics products, activities and
achievements.

The home page of ST Community is https://community.st.com/welcome.

For any problem met, it is interesting to first browse the STM32 Forum for related topics and
eventually to post a new one if no relevant thread is found.

AN4989 Rev 3 31/118

STM32 ecosystem outlines AN4989

2.4.5

32/118

STM32 Education

STM32 education material is available on-line at www.st.com (search for STM32
Education).

This site provides free educational resources created by STMicroelectronics engineers for
bringing an STM32 project to life.

On this site, a user learns at his own pace, watches classes as per his own schedule,
anytime, anywhere, on any device, or apply to one of the live learning sessions led by
STMicroelectronics experts at a nearby location.

Content:

e Online Training
e MOOC

e Videos

e Webinar

e Textbooks

e ST training courses

e Partner training courses

3

AN4989 Rev 3

http://www.st.com

AN4989

Compiling for debug

3

3.1

3

Compiling for debug

This chapter reviews the various options for debug-friendly compiling solutions.

Optimization
Compiler are usually configured by default to optimize performance and/or code size. In
most cases, this reduces or even prevents program debugging.

The most common symptoms resulting from code optimization are:

e Problem to set or reach a breakpoint. Some lines are not accessible.
e Impossibility to evaluate a variable (watch feature).

e Inconsistency while stepping (what | get, is not what | see).

Therefore, for efficient debugging it is recommended to modify the code optimization option.

AN4989 Rev 3 33/118

Compiling for debug AN4989

3.1.1 IAR™ EWARM

In Project->option->C/C++Compiler->Optimization

Figure 18. IAR™ EWARM Optimization option

Oiptions for nade "Project” by
.Eategnry: Factory Settings
General Options Muilti-file Compilatian
Static Analysis Discard Unusad Publics
Runtime Checking
CJC++ Compiler List Preprocessar Diagnostics MISRA-C-2004
Assembler MISRA-C: 19598 Encodings Extra Options
Qutput Converter Language 1 Language 2 Code Optimizations Outpaut
Custom Buid
Ruikd Acticns Level Enabled fransformations:
Linker !ngl []Cemmen subexpression elimination
Debugger Low []Loop unrolling
Simulator -) [Function inlining
CADI _ Madium ode mation
VSIS DAP O High Tuedng T
GDE Server Balanced [C]instructon schedu ing
Iet Mo sze constraint [Vectorization
) SR CONS 1413
J-Link/}-Trace
TI Stedaris
Mu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIL XDs
Carcel
34/118 AN4989 Rev 3 ‘Yl

AN4989 Compiling for debug

3.1.2 Keil® MDK-Arm MVision

In Project Option for Target->C/C++->Optimization

Figure 19. Keil® MVision Code Optimization option

E Options for Target ‘MyProject’ ﬂ

Device' Target' Output| Listing' User CfC++ |Asm | Linkerl Debugl Utilitiesl

— Preprocessor Symbaols

Define: IUSE_HAL_DRIVER,STM32F302x8

Undefine: I

— Language |/ Code Generation

[~ Execute-only Code [~ Strict ANSIC Warnings:
Optimization: |Level 0 (-O) - l [~ Enum Container always int IA” Warnings LI
[~ Optimize f{<default> [~ Plain Char s Signad [T Thumb tode
I_ SplitLoad |_V| 1{-01) I_ Read-Only Position Independent I_ Mo Auto Includes
[¥ OneELFS t:::: % E:g% [~ Read-Write Position Independent [~ €99 Mode
|”FC,|U$9 I..,‘Inc:..,’DriversJ’STM32F3n_HAL_Driver,‘Inc:..J’Drivers,‘STMBZFBxx_HAL_Driver,’Inc,’Legacy:..,‘Drivers,‘CMSIS,‘[D
aths
Misc I_ng
Controls
Compiler |-c —cpu Cortex-M4fp -D__MICRGLIB -g -00 —apcs=interwork —split_sections -1 .{Inc -| -
control | /Drivers/STM32F3:x¢_HAL_Driver/inc -1 _[Drivers/STM32F3x_HAL_Driver/inc/Legacy -l
string |../Drivers/CMSIS/Device/ST/STM32F3xx/Include -1 _[Drivers/CMSIS/Include —-C39 &7

[ok || cancel || Defauts |

Keil® documentation suggests that Level1 (-O1) can be a suitable alternative for debug.

Refer to www.keil.com support page Compiler optimization levels and the debug view for
details.

3

AN4989 Rev 3 35/118

Compiling for debug

AN4989

3.1.3 STM32CubelDE

In project Properties->Settings->Tool Settings->MCU GCC Compiler->Optimization

Figure 20. STM32CubelDE optimization level setting

o€
Resource o
Builders G o - et f .
v C/C++ Build Configuration: Debug [Active] Manage Configurations...
Build Variables
Environment # Toolchain Version ¥ Tool Settings # Build Steps ' Build Artifact b Binary Parsers @ Error Parsers
Logging
Settings # MCU Settings Optimization level Optimize for Debug (-Og) ™
C/C++ General & MCU Post build outputs Place functions in their own sections (-ffunction-sections)
CMSIS-5VD Settir ¥ % MCU GCC Assembler Place data in their own sections (-fdata-sections)
. 8y
Project Reference: Z General) [] Assume loading data from flash is slower than fetching instruction (-mslow-flash-data)
Refactoring Histo ? Debugging [Disable "strict aliasing” optimization (-fno-strict-aliasing)
Run/Debug Settir (& Preprocessor
2 Include paths
Miscellaneous
v 8B MCU GCC Compiler
£ General
2 Debugging
Preprocessor
£ Include paths
(% Optimization
Warnings
< > # Miscellaneous v
@
gcc also provides the -Og option:
-Og enables optimizations that do not interfere with debugging. It offers a reasonable level
of optimization while maintaining fast compilation and a good debugging experience.
3.2 Debugging information
Debugging information is generated by the compiler together with the machine code. It is a
representation of the relationship between the executable program and the original source
code. This information is encoded into a pre-defined format and stored alongside the
machine code.
Debugging information is mandatory to set breakpoint or get the content of a variable.
This chapter presents the location of the Debugging Information related option in IAR
Systems®, Keil®, and STM32CubelDE.
36/118 AN4989 Rev 3 Kys

AN4989

Compiling for debug

3.2.1

3

IAR™ EWARM

“Generate debug information” option tick box is accessible in

Project -> Options -> C/C++ Compiler -> Output Pane

Itis set by default.

Figure 21. IAR™ EWARM Generate debug Information option

Options for node “Project”

Cateqony:

GGeneral Options
Static Analysis
Runtime Checking

Assembler
Output Convertar
Custom Build
Build Actions
Linker
Debugger
Simulatar
CADI
CMSIS DAP
GDEB Server
I-jet
J-Link/¥Trace
T1 Stellaris
Mu-Link
PE micra
ST-LINK
Third-Party Driver
TI MSP-FET
TI XD5

by
Factary Settings
[Mult-file Compiation
Dizcard Lnused Publics
List Praprocessor Dagnostics MISRA-C:2004
MISRA-C: 1998 Encodings Extra Options
Language 1 Language 2 Code Optimizations Output
I |Generate debug information |
Code saction namea:
Jeodt
1] 4 Cancel

AN4989 Rev 3

37/118

Compiling for debug

AN4989

3.2.2 Keil®-MDK-Arm MVision

Debug Information Tick box is accessible in
Project -> Options -> Output Pane.

It is set by default.

Figure 22. Keil® Debug Information option

ﬂ Options for Target "MyProject’

Devicel Target Output | Lisﬁngl User I CfCH—l Asm | Linkerl Debugl Uﬁliﬁesl

Select Folder for Objects... | Name of Executable: IMyProject

(# Create Executable: MyProjectiMyProject
[v Debug Information
[~ Create HEX File
[v Browse Information

(" Create Library: MyProjectiMyProjectlib

[~ Create Batch File

OK I Cancel Defaults

Help |

38/118 AN4989 Rev 3

)

AN4989

Compiling for debug

3.2.3 STM32CubelDE

Option to manage Debugging Information are in

Properties -> C/C++ Build -> Settings -> Tool Settings -> Debugging.

Figure 23. STM32CubelDE debug information option

Build Variables
Environment
Legging
Settings
C/C++ General
CMSIS-SVD Settings
Project References
Refactering History
Run/Debug Settings

[Z properties for Project o x
[type filter text Settings Hvh v w
Resource R
Builders Configuration: |Debug [Active] ~ | Manage Configurations...
v C/C++ Build

&® Toolchain Version & Tool Settings .‘" Build Steps Build Artifact m Bimary Parsers @ Error Parsers

(5 MCU Settings Debug level |Maximum (-g3) ~
(# MCU Post build outputs None
~v i MCU GCC Assembler Minimal (-g1)

@ General Default (-g)
(# Debugging w—

(22 Preprocessor
(2 Include paths
(5 Miscellaneous
v %3 MCU GCC Compiler
(% General
(% Debugging
(5 Preprocessor
(5 Include paths M

Apply and Close Cancel

Debug Level can be set among four levels:

None: Level 0 produces no debug information at all;

Minimal (-g1): Level 1 produces minimal information, enough for making backtraces in
parts of the program for which no debug is planned. This includes descriptions of
functions and external variables, and line number tables, but no information about local
variables.

Default (-g): Produce debugging information in the operating system's native format
(stabs, COFF, XCOFF, or DWARF). GDB can work with this debugging information.
Maximal (-g3): Level 3 includes extra information, such as all the macro definitions
present in the program. Some debuggers support macro expansion when -g3 is used.

The same pane contains the options to add profiling information.

For further information, refer to Section 3.1 Option Summary available at http://gcc.gnu.org.

3

AN4989 Rev 3 39/118

Connecting to the board AN4989

4

4.1

40/118

Connecting to the board

The way IDEs get connected to the boards is not always known. In case of trouble, a basic
knowledge about this topic can save time in identifying and fixing the issue.

This chapter intends to provide the minimal set of information in order to prevent or quickly
fix issues related to connection.

SWD/JTAG pinout

On STMicroelectronics hardware kits, SWD must be made available for connection with ST-
LINK.

SWD is always mapped on PA13 (SWDIO) and PA14 (SWCLK). This is the default state
after reset.

Nothing specific is required in the application code to make SWD work.

Special attention must be paid to make sure that, voluntarily or accidentally, the SWD pins
are not switched to some alternate functions or affected by I/O settings modifications.

Hint: For instance, STM32Cube PWR examples switch all GPIO (including SWD) in an
analog state in order to minimize consumption. This disconnects the debugger. A
Connect Under Reset using NRST is required to take back the control of the
board. (Refer to Section 4.2).

When using STM32CubeMX at configuration stage, PA13 and PA14 can be in one of three
states upon selection of Serial Wire in SYS/Debug configuration list:

e Reset, shown by the pins colored in gray in Figure 24
e Reserved but inactive shown by the pins colored in orange in Figure 25
e Active shown by the pins colored in green in Figure 26

Figure 24. SWD pins PA13 and PA14 in Reset state under STM32CubeMX

3

AN4989 Rev 3

AN4989 Connecting to the board

Figure 25. SWD pins PA13 and PA14 in Reserved but inactive state
under STM32CubeMX

SYS_JTCK-SWCLK

pata o

| s¥s_JTms.swoio

Figure 26. SWD pins PA13 and PA14 in Active State under STM32CubeMX

S¥5 Mode and Configuration i

®

N Ly = —d
Dabug Trats ASynhronous Sw

Systerm Wake-Up 1 §

System Wake-Up 2 E._.'l'

Sy siem VWake-Up 4 I:.I}b

Conimer ik sl in & 3

SYHEM Yvane-up 2 %]

Power Voltage Detector In Disable

Temebase Source SysTick

5Y5_JTMS-SWIDIO

All three states are functional from SWD connection point of view.

It is anyway recommended to explicitly activate the SWD pins by selecting “Serial Wire” or
“Trace Asynchronous SW” (together with SWO. Refer to Section 7.3 on page 71). This is the
only way by which STM32CubeMX protects the 1/0 from being selected for another use
during the configuration process by highlighting the conflict to the user.

JTAG is not available on Nucleo and Discovery boards.
On EVAL boards, it is available through a dedicated 20-pin connector.

Nevertheless, in STM32CubeMX, SWD remains the default and preferred debug port. For
this reason, extra JTAG pins are not reserved. It is then strongly advised to explicitly enable
the desired JTAG configuration.

3

AN4989 Rev 3 41/118

Connecting to the board AN4989

4.2

4.2.1

42/118

Especially since JTAG is using more pins, users should be aware that it is at the expense of
using some IPs.

Refer to the product datasheet for a detailed presentation of the default and alternative
function mapping for each pin.

Reset and connection mode

This section reviews the reset and connection mode available while using ST-LINK/V2or
STLINK/V3 debug interface.

Presentation

Connection mode and reset mode are 2 different but dependent concepts:

Reset mode can be either:

e Hardware: drive the NRST pin of the MCU. In all STMicroelectronics hardware kits, the
debugger can drive this NRST through ST-LINK/V2 or ST-LINK-V3.

Hint: On Nucleo, check that relevant Solder Bridge SB12 is not OFF.

e Software (write to core register)
— System: Core and all Peripheral SOC IPs are reset
— Core: Only Arm® Cortex® is reset

Connection mode can be either:

e Normal: Debugger takes control through JTAG/SWD port and starts execution after a
software reset.
This is working only if JTAG/SWD is available:
— GPIO correctly configured and clocked
— FCLK or HCLK enabled
— Main Power domain or Low-Power debug active

e ConnectUnderReset: Debugger takes control while asserted NRST pin, setting GPIO
and clock into there default state.
This is required in case of a reconnection to a system in Low-Power mode or which has
changed SWD pin to alternate functions.

e Hotplug: Debugger connect without reset nor halt. Once connected, the user can chose
to perform the required action (typically halt to get where the program stands and read
registers or memory for instance).

Reset and Connection mode are differently accessible and exposed depending on tool and
IDE.

3

AN4989 Rev 3

AN4989

Connecting to the board

4.2.2

3

IAR™ EWARM

Reset and Connection mode are seen as a single reset mode option as shown in Figure 27.

Figure 27. Reset Mode in IAR8.10: screenshot

Options for node "Project” X
.I:alegor_l,f. Factony Seftings
General Options
Static Analysis
Funtime Checking

C/C++ Compier Setup Communication Breakpoints Mulicors

Assembiler Emulator

Dutput Converter

Custarm Build Auto v Senal no:

Build Actions

Linksr Abways prompt for probe selection

Debugger Resat
ig.;h‘br S‘ystem [Ellaul v
CMEIS DAP
GDB Server . Software
I-jet | Hardware
J-Link/}Trace | Connect during reset
I Stellaris * SWD e ISpecty
Mu-Link
PE micro
Third-Party Driver
TI MSP-FET
TI XD

Caes

e System (default): Normal Connection. Software System Reset prior to jump at main.
e Core: Normal Connection. Software Core Reset prior to jump at main.

e Software: Normal Connection. No Reset prior to jump and stop at main.

e Hardware: Normal Connection. Assert NRST MCU pin prior to jump to main.

e Connect during reset: Connection while asserted Hardware NRST.

Hotplug connection is accessible with “Attach to running Target” function in project menu.

AN4989 Rev 3 43/118

Connecting to the board AN4989
4.2.3 Keil® MDK-Arm MVISION
Can be set through
Project -> Options -> Debug -> Settings -> Debug
Figure 28. Connect and Reset option Keil®
KA Options for Target 'STM32L476G-Discovery' X
Device | Target | Output | Listing | User | C/C++| Asm | Linker Debug] Uilties |
€ Use Smulator with restictions Settings | | Use: [ST-Link Debugger v| Settings I |
S Cortex-M Target Driver Setup X

[v
nti{ Debug]Trace | Flash Download'

[~ Shareable ST-Link

r Debug Adapter
R Unit: |ST-LINKAV2-1 -

SW Device
IDCODE Device Name

SWDIO| (x2BAD1477 ARM CoreSight SW-DP

Serial Number:
| 0677FF495351885087172407 & Ii
CPL | Version: HW: [V21 Fw: [V2J36M26 ol - (ame: [
A |
[V Check version on stat [| [Update | [ap: [0
Diial
Target Com
DGl Port: ISW vl
r Clock
Req| 4 MHz Selected: | 4 MHz
Debug
Connect & Reset Options Cache Options Download Options
Connect: |under Reset LI Reset: IMode{ec{ j v Cache Code [~ Verfy Code Download

V| Roact ey Comnact il Autodetect v Cache Memory [~ Download to Flash
- HW RESET
SYSRESETREQ
VECTRESET

Connect: controls the operations that are executed when the pVision debugger connects to
the target device. The drop-down has the following options:

e Normal just stops the CPU at the currently executed instruction after connecting.
e with Pre-reset applies a hardware reset (HW RESET) before connecting to the device.

e under Reset holds the hardware reset (HW RESET) signal active while connecting to
the device. Use this option when the user program disables the JTAG/SW interface by

mistake.

Reset after Connect: performs (if enabled) a reset operation as defined in the Reset drop-
down list (see below) after connecting to the target. When disabled, the debugger just stops
the CPU at the currently executed instruction after connecting the target.

44/118

3

AN4989 Rev 3

AN4989

Connecting to the board

3

Reset: controls the reset operations performed by the target device. The available options
vary with the selected device.

Autodetect selects the best suitable reset method for the target device. This can be a
specialized reset or standard method. If Autodetect finds an unknown device, it uses
the SYSRESETREQ method.

HW RESET performs a hardware reset by asserting the hardware reset (HW RESET)
signal.

SYSRESETREQ performs a software reset by setting the SYSRESETREQ bit. The
Cortex®-M core and on-chip peripherals are reset.

VECTRESET performs a software reset by setting the VECTRESET bit. Only the
Cortex®-M core is reset. On-chip peripherals are not reset. For some Cortex®-M
devices, VECTRESET is the only way they may be reset. However, VECTRESET is
not supported on Cortex®-M0, Cortex®-M0+, Cortex®-M1, and Arm®v8-M cores.

Refer to http://www.keil.com/

Hotplug

If all of the following options are disabled, no hardware reset is performed at debugger start:

Options for Target -> Debug -> Load Application at startup

Options for Target -> Debug -> Settings -> Reset after connect (with Options for Target -

> Debug -> Settings -> Connect selected as NORMAL)
Options for Target -> Utilities -> Update Target before Debugging

Figure 29. Keil® hotplug step1

Kl Qptions for Target 'STM32L476G-Discovery’ X

Device] Target] Output] Listing] User] C/CHI Asm | Linker Debug]Util'rtiesl

Settings | | ' Use: [ST-Link Debugger

| I iLoad Application at Startup | v

" Use Simulator
™ Limit Speed to Real-Time

with restrictions

LI Settings

IV Load Application at Startup [¥ Run to main()

Initialization File:

| o e |

Restore Debug Session Settings

v Breakpoints v Toolbox

¥ Watch Windows & Peformance Analyzer
v System Viewer

v Memory Display

Initialization File:

| ol e

Restore Debug Session Settings

v Toolbox

™ Tracepoints
[v System Viewer

v Breakpoints
IV Watch Windows
v Memory Display

[~ Wam if outdated Executable is loaded

CPU DLL: Parameter; Driver DLL: Parameter;
|SARMCM3.DLL [-REMAP -MPU |SAR MCM3.DLL [-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
IDCM.DLL |-pCMd |TCM.DLL |pCM4

Manage Component Viewer Description Files ... |

[~ Wam if outdated Executable is loaded

oK | Cancel Defaults | Help
AN4989 Rev 3 45/118

Connecting to the board

46/118

AN4989
Figure 30. Keil® hotplug step2
Cortex-M Target Driver Setup X
Debug ITrace | Flash Download |
Debug Adapter —SW Device
Unit: |ST-LINK/V/2-1 | IDCODE et
[~ Shareable ST-Link SWDIO | (x2BAD1477 ARM CoreSight SW-DP Up
Dowr
Serial Number: _l
l 0677FF495351885087172407 & Automatic Detection |0 CODE I
Version: HW:]VZ-‘I FW: IVZJBGMZG Manual Configuration Device Name |
¥ Check version on start | Delete | ||j|'f—_'a-| IR len | AP: |£||
: -Target Com
Port: |SW vl
Clock
’;eq:l 4 MHz Selected: 4 MHz
Debug
-Connect & Reset Options -Cache Options —— [~ Download Options -
Connect: |Norrma1 j |Reset: |Aulodeted j ¥ Cache Code [™ Verify Code Download
i [Stop after Feset V¥ Cache Memory [~ Download to Hash

0K I Cancel

AN4989 Rev 3

3

AN4989

Connecting to the board

)

Figure 31. Keil® hotplug step3

KA Options for Target ‘STM32L476G-Discovery' X
Device] Target l OLrtput] Listing] User] CICHI Asm | Linkerl Debug Utiities |

Configure Alash Menu Command
(¥ |Use Target Driver for Flash Programming ¥ Use Debug Driver

— Use Debug Driver — Settings | | [~ Update Target before Debuaging |
it Fle: J Edt... |
" Use Bxtemal Tool for Alash Programming

Command:l J

Arguments: I
.

Configure Image File Processing {(FCARM):

Output File: Add Output File to Group:
Drivers/STM32L4xx_HAL_Driver ~|
Image Files Root Folder: “ I Generate Listing

0K | Cancel Defaults Help

With these options disabled, the debugger starts, and the target hardware stops at the
current location of the program counter. This allows to analyze the memory and register
content.

Because Options For Target - Debug - Load Application at startup is disabled, the debugger
does not have any application program and debug information. To load this information into
the debugger, use the LOAD debugger command with the option NORESET or
INCREMENTAL.

LOAD can be automated using an Initialization File under Options For Target - Debug.

To go further, refer to http://www.keil.com/.

AN4989 Rev 3 47/118

Connecting to the board AN4989

4.2.4 STM32CubelDE

Reset and connection modes can be changed through

Run -> Debug Configurations -> Debugger

Figure 32. Select Generator Options Reset Mode

: Debug Configurations o x
Create, manage, and run configurations j@\
LE X B3~ Name: | STM32L476G-Discovery Debug
type filter text | [Main | 35 Debugger| B> Startup | &, Source|] Common
[€] C/C++ Application GDB Connection Settings -

[E] C/C++ Attach to Application

lJ (®) Autostart local GDB server Host name or IP address localhost
[€] C/C++ Postmortem Debugger .
[5] C/C++ Remate Application () Connect to remote GDB server Port number 61234
[€] GDB Hardware Debugging
& Launch Group Debug probe | ST-LINK (ST-LINK GDB server) ~
I Launch Group (Deprecated) GDB Server Command Line Options
M. M C/Ces
B st i || e
DE| -Discovery Debut
Y= ®5swD OraG
[JST-LINK S/N
Frequency (kHz): | Auto v|
Access port: | 0 - Cortex-M4 v|

Reset behaviour

Type: | Software system reset Halt all cores

IR Software system reset
Eh v
) Revert Apply
Filter matched 9 of 10 items

The Mode Setup group allows to set up the Reset Mode along with other debug behaviors.

. Reset Mode as Connect under reset: asserts hardware reset and then connects to the
target (under reset).

e Reset Mode as None: performs a hardware reset and then connects to the target.
e Reset Mode as Software system reset: does not perform any hardware reset but
connects to the target and performs a software system reset.

In case of problem to connect to the board with STM32CubelDE, make sure that NRST from
ST-LINK is properly connected to STM32 NRST.

Hotplug mode is not proposed by STM32CubelDE. STM32CubeProgrammer can be used
instead.

3

48/118 AN4989 Rev 3

AN4989 Connecting to the board

4.2.5 STM32CubeProgrammer

Reset and Connection modes can be selected in the ST-LINK configuration Pane.

Figure 33. STM32CubeProgrammer Reset mode

Serial number 0677FF495351885087172407... ~

Port SWD -
Frequency (kHz) 4000 —

Mode MNormal

Shared Software reset

Hardware reset

External loader
Core reset

TaIgEL vunayge

Firmware version

e Software system reset: Resets all STM32 components except the Debug via the
Cortex-M application interrupt and reset control register (AIRCR).

e Hardware reset: Resets the STM32 device via the nRST pin. The RESET pin of the
JTAG connector (pin 15) must be connected to the device reset pin.

e Core reset: Resets only the core Cortex-M via the AIRCR

Figure 34. STM32CubeProgrammer Connection mode

ST-LINK configuration

Serial number 0677FF495351885087172407.. =

Frequency (kHz)

4000 >

Access port

Hot plug

Reset mode
Under reset

Shared Disabled

External loader
Target voltage

Firmware version

3

AN4989 Rev 3 49/118

Connecting to the board AN4989

4.3

Caution:

50/118

e With ‘Normal’ connection mode, the target is reset then halted. The type of reset is
selected using the ‘Reset Mode’ option.

e The ‘Connect Under Reset’ mode enables connection to the target using a reset vector
catch before executing any instructions. This is useful in many cases, for example
when the target contains a code that disables the JTAG/SWD pins.

e The ‘Hot Plug’ mode enables connection to the target without a halt or reset. This is
useful for updating the RAM addresses or the IP registers while the application is
running.

In Keil® MDK-Arm uVISION, IAR™ EWARM and STM32CubeProgrammer, in case NRST is
not connected on the board or PCB a silent fallback operates with a System Reset. In case
of failure to take control of a board despite the use of Connection UnderReset / Hardware,
check the NRST connection on the board.

Low-power case

By default, the debug connection is lost if the application puts the MCU in Sleep, Stop, or
Standby mode while the debug features are used. This is due to the fact that the Cortex®-M
core is not clocked in any of these modes.

However, the setting of dedicated configuration bits in the DBGMCU_CR register allows
software debug even when the low-power modes are used extensively.

Refer to the PWR and DBG sections of the reference manual for details.

Appendix A: Managing DBGMCU registers on page 95 guides the user through the various
means to manage DBGMCU depending on IDE and needs.

In order to reduce power consumption, some applications turn all GP1Os to analog input
mode, including SWD GPIOs. This is the case for all PWR examples provided in
STM32Cube (debug connection is lost after SystemPower Config () which sets all
GPI1Os in Analog Input State).

Enabling low-power debug degrades power consumption performance by keeping some
clocks enabled and by preventing to optimize GPIO state. Even if this is useful for functional
debugging, it has anyhow to be banned as soon as the target is to measure/enhance power
consumption.

All DBGMCU registers values are kept while reset. Users must pay attention not to let
debug or unwanted states when returning to normal execution (refer to Section 9: Dual-Core
microcontroller debugging on page 92).

3

AN4989 Rev 3

AN4989

Breaking and stepping into code

5

5.1

5.2

3

Breaking and stepping into code

This chapter provides users with highlights about a few points affecting system behavior at
code break.

Debug support for timers, RTC, watchdog, BxCAN and 12C

During a breakpoint, it is necessary to choose how the counter of timers, RTC and
watchdog should behave:

e They can continue to count inside a breakpoint. This is usually required when a PWM is
controlling a motor, for example.

e They can stop counting inside a breakpoint. This is required for watchdog purposes.

For the BXCAN, the user can choose to block the update of the receive register during a
breakpoint.

For the I2C, the user can choose to block the SMBUS timeout during a breakpoint.

Those options are accessible in DBGMCU freeze registers (DBGMCU_APB1FZR1,
DBGMCU_APB1FZR2) which can be written by the debugger under system reset.

If the debugger host does not support these features, it is still possible to write these
registers by software.

Refer to Appendix A: Managing DBGMCU registers on page 95 to find suitable ways to
handle debug options depending on IDEs and needs.

Debug performance

To save flashing time and improve debugger reactivity when stepping, make sure that the
higher SWD frequency possible is used with the probe.

When using IAR™ EWARM, or Keil® MDK-Arm MVISION speed is set at speed is set at
1.8 MHz by default. On system with a core clock greater than 1 MHz, it is safe to use the
highest 4 MHz SWD speed.

AN4989 Rev 3 51/118

Breaking and stepping into code AN4989

5.21 IAR™ EWARM
In Project -> Option -> ST-LINK -> Interface speed

Figure 35. IAR™ EWARM ST-LINK SWD Speed setting

i Ny
Options for node "Project” u
Categaony: Factary Seftings
General Options
Static Analysis
Runtime Checking Setup | Communication | Breakpoints
C/C++ Compiler Emulator
Assembler
Output Converter ST-LINKv2 Serial no:
Custom Build .
Always prompt for probe selection
Build Actions D vsp P P
Linker Reset
Debugger -
Simulater lSyStem (default) h
CADIL
CMSIS DAP Interface y———, Access Port
GDEB Server @) JTAG Interface speed
Tet/TTAGjet e
I-Link/I-Trace 4.0MHz O specify !
I Stellaris
PE micro 1.8MHz
ST-LINK 950kHz
Third-Party Driver 480kHz
TIMSP-FET ?gt:i
TLXDS 100kHz
50kHz
25kHz | ok || canea |
15kHz

—Mf

3

52/118 AN4989 Rev 3

AN4989

Breaking and stepping into code

5.2.2

Keil® MDK-Arm pVISION

SWD Speed setting is accessible in
Project -> Options for Target.. -> Debug -> Settings -> Target Com

Figure 36. Keil® SWD Speed Setting

Cortex-M Target Driver Setup X

Debug]Tlace | Fash Downloadl

Debug Adapter SW Device
Unit: [ST-LINK/V2-1 =l IDCODE | Device Name _ Move
™ Shareable ST-Link SWDIO 0x2BA01477 ARM CoreSight SW-DP Up |

Serial Number:
[PE77FF495351885087172407

& Automatic Detectio ycope: [

FW: |V2J36M26 € Manuzl Corfigwation Deyice Name: |
AP: |0

Version: HW- [V2-1

¥ Check version on start | | ::-:--|
r~ Target Com :
Pgt:ISW—'I
~Clock
Req:l 4 MHz Selected:

4 MHz

~Connect & Reset Options

Cache Options

Connect: |Norrna| LI
|¥ Reset after Connect

Reset: IAulcdeiect
I Stop after Reset

LI [v Cache Code
v Cache Memory

1 Download Options

[~ Verify Code Download
[~ Download to Fash

3

0K I Cancel

AN4989 Rev 3

53/118

Breaking and stepping into code AN4989
5.2.3 STM32CubelDE
In Run -> Debug Configuration -> Debugger Pane
Figure 37. Access to Generator Options in STM32CubelDE V2.0.0
[Debug Configurations m] x

Note:

54/118

Y LIEEX

Create, manage, and run configurations

type filter text

[©] C/C++ Application
[€] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[] C/C++ Remote Application
[GDB Hardware Debugging
@ Launch Group
> Launch Group (Deprecated)
v E STM32 Cortex-M C/C++ Application
[} STM32L476G-Discovery Debug

Filter matched 9 of 10 items

3
@

Name: ‘ STM32L476G-Discovery Debug

5] Main ﬁ- Debugger| > Startup | %, Source| [C] Common
GDB Connection Settings
(®) Autostart local GDB server Host name or IP address | localhost

(O Connect to remote GDB server Port number 61234

Debug probe | ST-LINK (ST-LINK GDB server)

GDB Server Command Line Options

Interface
[OE)] COJTAG
[IST-LINK S/N San

Frequency (kHz): m

Access port:

Reset behaviour (950

Type: | Connect gm

Serial Wire Viewer (SWV)

Reyert Apply

SWD communication is always possible on all ST boards whereas JTAG is only present on

EVAL boards.

SWD communication is always present on all Cortex®-M devices whereas JTAG is not
present on Con‘ex®-M0(+) devices. Refer to Appendix D on page 116 for a complete
overview of debug capabilities for each Cortex®-M type.

AN4989 Rev 3

3

AN4989

Breaking and stepping into code

5.3

5.3.1

3

Secure platform limitation

The STMicroelectronics platform provides the following code protection means.
RDP: ReadOut Protection

Prevents Flash Memory access through the JTAG for ALL Flash memory.
PcROP: Proprietary Code ReadOut Protection

Prevents read access of configurable Flash memory areas performed by the CPU execution
of malicious third-party code (Trojan Horse).

WRP: Prevents accidental or malicious write/erase operations.

For further details please refer to the reference manual or section Training L4 on
STMicroelectronics website www.st.com.

The next sections provide additional details on the expected behavior of the secure
applications.

RDP

e Level 0: No Protection.
This is the factory default mode allowing all accesses.
e Level 1: Read Protection.

Any access to Flash or protection extension region generates a system hard-fault
which blocks all code execution until the next power-on reset. A simple reset does re-
enable code execution; power must be switched off and on so that power-on reset
enables code execution. The restriction depends on the STM32 Series as described in
Table 4.

AN4989 Rev 3 55/118

http://www.st.com

Breaking and stepping into code AN4989

Note:

5.3.2

56/118

Table 4. STM32 Series RDP protection extension

Product RDP protection extension
FO + backup registers
F2 + backup SRAM
F3 + backup registers
F4 + backup SRAM
LO + EEPROM
L1 + EEPROM
La + backup registers
+ SRAM2
L5 RDP 4 levels
+ backup registers + SRAM2
F7 + backup SRAM
H7 + backup SRAM

Thus, any attempt to load, or connect to, an application running from Flash crashes.
It is still possible to load, execute and debug an application in SRAM.

Option Bytes management can be done with ST-LINK utility or with an application
running from SRAM.

Going back to RDP Level 0 completely erases the Flash.
e Level 2: No Debug.

JTAG/SWD connection is killed. There is no way back. In this case, nobody - even
STMicroelectronics - can perform any analysis of defective parts.

e Level 0.5 is an additional protection level associated with TrustZone(only available in
STM32L5 Serie). RDP 0.5 is available only when TrustZone is enabled. Debug of
secure domain is forbidden, only non-secure domain can be accessed for debug.
Regression from level 0.5 to level 0 triggers a Flash mass erase, as well as backup
registers and all SRAMs.Regression from RDP Level 1 to RDP Level 0.5 leads to a
partial Flash memory erase: only the non-secure part is erased

Refer to AN5421 and AN5347 for more informations about Trustzone development on
STM32L5 Series.

PCROP

Proprietary Code ReadOut Protection is the ability to define secure area in Flash where user
can locate a proprietary code.

This prevents malicious software or debugger from reading sensitive code.

In case an application with third party code in PCROP area needs to be debugged, the

following points must be considered:

e Step-into PCROP function is tolerated but ignored (Step-over)

e Access to protected memory through debugger trigs Flash Interruption (Instrument
NMIHandler) and return default pattern for the whole area

For further details refer to section Memory Protection in the reference manual of the device.

AN4989 Rev 3 ‘Yl

AN4989

Exception handling

6

6.1

3

Exception handling

It is usually helpful, or even mandatory in complex project, to properly trap and find root
cause of software exception like HardFault and NMI. This chapter intends to make the user
aware of a few techniques used to help investigating such issue.

In order to get deeper into the subject, the user can usefully refer to Joseh Yiu’s work and
book collection The Definitive Guide to Arm-Cortex-M, and to Carmelo Noviello’s recent on-
line guide Mastering STM32.

Default weak Handlers

By default Handlers are implemented as __weak functions which perform endless loops:

__vector_ table

DCD sfe (CSTACK)

DCD Reset_Handler ; Reset Handler
DCD NMI Handler ; NMI Handler

DCD HardFault_ Handler ; Hard Fault Handler
DCD 0 ; Reserved

DCD 0 ; Reserved

DCD 0 ; Reserved

DCD 0 ; Reserved

DCD 0 ; Reserved

DCD 0 ; Reserved

DCD 0 ; Reserved

DCD SVC_Handler ; SVCall Handler
DCD 0 ; Reserved

DCD 0 ; Reserved

DCD PendSV_Handler ; PendSV Handler
DCD SysTick Handler ; SysTick Handler

Nothing is trigged on debugger side and application looks hanged / stuck.
In that case, code break is needed and the PC must be at the address of the Handler.

Some IDEs provide the faulty calling code through Call stack window. (Keil® MDK-Arm
pVision, STM32CubelDE).

If it is not the case, display registers and find the faulty code address in SP + 0x18

In STM32CubelDE all weak default handlers point to the same DefaultHandler which can be
confusing.

A more efficient approach is to trap the exception by instrumenting Handlers.

AN4989 Rev 3 57/118

Exception handling AN4989

6.2

58/118

Custom Handlers

One way to generate templates of Handler functions is to use STM32CubeMX.

In Configuration -> NVIC Configuration -> Code Generation, use Generate IRQ handler
tick boxes as shown in Figure 38.

Figure 38. Asking for Handler code generation

errupt takis 3 " /i Geperate.,. [Cail HA |
Hon maskable interr o
Hard fault infernipt |
Memary manageme.. /]
Prefeich faull, mem |
Undefined instructio.., |
System senice call /|
Debug maonitar |
Pendable request fo |
Time base; System o =

When Non maskable interrupt and Hard fault interrupt are selected, the following code is
generated:

void NMI Handler (void)

{

/* USER CODE BEGIN NonMaskableInt IRQn 0 */

/* USER CODE END NonMaskableInt IRQn 0 */
/* USER CODE BEGIN NonMaskableInt IRQn 1 */

/* USER CODE END NonMaskableInt IRQn 1 */

/**

* @brief This function handles Hard fault interrupt.
*/

void HardFault Handler (void)

{

/* USER CODE BEGIN HardFault IRQn 0 */

/* USER CODE END HardFault IRQn 0 */
while (1)

{

}

/* USER CODE BEGIN HardFault IRQn 1 */

/* USER CODE END HardFault IRQn 1 */
1

This simple declaration overriding the default weak function,removes ambiguity and clarifies
the call stack.

AN4989 Rev 3 ‘Yl

AN4989 Exception handling
In order to trap the exception, a hardware or a software breakpoint can be set in the IDE or
directly programmed in the source code using Arm® instruction BKPT.

Caution: BKPT is not tolerated if no debugger is connected (refer to Chapter 9: Dual-Core

3

microcontroller debugging on page 92). it is advised to set it under #ifdef statement.
In-line insertion of assembly instruction in application C code depends on the IDE.
e |AR™ EWARM and STM32CubelDE

void NMI_ Handler (void)

{

#ifdef DEBUG
asm ("BKPT 0") ;
#endif

}
o Keil®
void NMI Handler (void)

{

#ifdef DEBUG

asm

{

BKPT 0

}

#endif
}

For each IDE, it is also possible to use the abstraction function defined in the CMSIS library
and provided in STM32Cube software pack.

void NMI Handler (void)
{

#ifdef DEBUG
__BKPT(0) ;

#endif

}

In all cases, the Halt Debug-Mode is entered; it allows to investigate the issue by inspecting
Call Stack and Registers content.

Tip: On Keil® MDK-Arm MVISION, the caller code is not directly accessible in the Call
Stack Window. Right clicking "Show Caller Code" as in Figure 39 leads to the
faulty line.

AN4989 Rev 3 59/118

Exception handling

AN4989

Figure 39. Keil® Access to Show Caller Code in Contextual menu

Call Stack + Locals

Type
void f()

lint f0
auto - un...

auto - un..

MName Location/Value
(] HardFauIt_H _____ S: = — Cn.(.jnnnnq-‘nr\
7 ow Caller Code i
=% main S
o Show Callee Code
toto
* Dn ¥ | Hexadecimal Display
g;leaH Stack + Locals |4§;' -ace Exceptions g; ent Counters

6.3 Trapping div/0 exception

Most often, code execution causing a division by zero are difficult to investigate:

¢ Nothing is neither triggered nor trapped.
e Erroneous returned value generates an unexpected and unpredictable behavior that is

very difficult to analyze.

This chapter gives several tips in order to properly trap div/0 exceptions.

6.3.1 Cortex®-M0/M0+ case

For targets that do not support hardware division instructions (SDIV/UDIV), integer division-
by-zero errors can be trapped and identified by means of the appropriate C library helper

functions:

__aeabi idivo0()

When integer division by zero is detected, a branchto __aeabi idivo0 () is made. A
breakpoint placed on __aeabi_idiv0() allow to trap the division by zero.

To ease the breakpoint application, override the default function:

void aeabi idivo0 ()
{
#ifdef DEBUG
__BKPT(0) ;
#endif

}

This way, and depending on IDE, the call stack or registers can be examined and the
offending line in the source code can be rapidly found.

To go further refer to section 7.7 of Arm® Compiler Software Development Guide.

60/118

AN4989 Rev 3

3

AN4989 Exception handling
6.3.2 Cortex®-M3/4/7 case
For targets that support hardware division instructions, Trapping of DIVO operation is
possible by configuring System Control Block (SCB) registers, accessible through CMSIS
library.
For example on Cortex®-M3:
SCB_CCR register description is provided in Figure 40.
Figure 40. Cortex®-M3 SCB_CCR Description
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 [H]
UN user | NON
A?_ISKN NMIGN £ ‘“':r'g;'— ME,E;D EEEAE
Refer to STM32F 10xxx/20xxx/21xxx/L1xxxx Cortex-M3 programming manual (PM0056).
Setting bit 5 of SCB_CCR register
SCB->CCR |= 0x10; // enable div-by-0 trap
When Div0 occurs it is trapped in HardFault_Handler.
With breakpoint on while instruction into HardFault_Handler, CallStack point to the offended
line and SCB->CFSR register explicits the type of fault
SCB_CFSR register description is provided in Figure 41.
Figure 41. Cortex-M3 SCB_CFSR Description
31 1615 8 7 0
Usage Fault Status Reqgister BusE:;iI;tSe :atus Eszgt::sn;i:?;te;l
L I\ A)
UFSR BFSR MMFSR
3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
oy | woce [mvec [i Toncer
rc_wi rc_wi rc_wi rc_wil rc_wl rc_wl
15 14 13 12 11 10 7 6 5 4 3
s 5T | MPRE C s s M ACC | I1ACC
A e | ean | OS |Semm| eAm | vaup Ehn |UNSTK vioL | viot
nw m w w v w w w w v n

3

The following sections describe the management of SCB registers as a function of the

selected IDE.

AN4989 Rev 3

61/118

Exception handling AN4989

IAR™ EWARM

Detailed R/W access to the values of each SCB registers bits at runtime can be obtained
through View -> Register -> System Control Block (from Pick List) as shown in Figure 42.

Figure 42. IAR™ EWARM exception handling

ﬁ Project - IAR Embedded Workbench IDE - ARM 7.60.2
Eile Edit View Project Debug Disassembly ST-Link Tools Window Help

D@ & @ | - WA S | ob o
SrleZaocEn X
s
Workspace x | Call Stack = e - % Regster
F103 Frame 54 static void MX_GFIO_Init(void); — | Bystem Control Block v | «fincregisters -
—_ = -
Fles || @ erorents betier |56 e osmR coos meom zee v/ Airce > oxraosoan MHFAT - CuEDDORTED
Elalrios Fios [~ <Ezception frame> Sl /" Private functisa FBFAR - D=EDDDEDFS ADDRESS = 0=E000EDFS8
|8 3 Application €3 ADDRESS = 0=E000EDFS SCR 0=00000000
| CaDrivers [_call_main + 0s9] 59 s+ USER CODE END PFP */ FICCR = 0x00000010 VTOR 006000000
L@ (1 0utput 60 EICFSR = 0x02000000 SHPR1L 000000000
61 /* USER CODE BEGIN 0 +/ F 1accvror =0 SHPR2 000000000
62 | pacc¥IOL =0 SHPR3 000000000
63 s+ USER CODE END 0 #/ |- MUNSTKERR - 0 FISHCSR = 000000000
64 |- MSTKERR -0
65 int main(void) [~ HLSPERR =0
660 1 | HHARYALID - 0
s | IBUSERR =0
68 /* USER CODE BEGIN 1 #/ [PRECISERR = 0
5 S kY
'r‘ﬂ /{ enable div-by-0 I STKERR -0
" / _| |} LsPERR -0
2 =| |- BFaR¥ALID - 0
73 7 MCU nf: at. [~ URDEFINSTR = 0
2 |- INVSTATE =0
75 /* Reset of all peripherals, Initiali the Flash interfas: INYPC =10
76 EAL Init(); |- Wocp -0
77 |- UNALIGHED - 0
78 /* Configure the system clock */
79 SystenClock Config{l; CPACR = 0=00000000
80 DFSR - 0z0000000E
a1 ured als +/ HFSR - 0x40000000
22 VECTTBL =0
e FORCED -1
0 DEBUGEVT =0
as | s . ICSR - 0=00000803
e VECTACTIVE - 0003
:_ RETTOBASE =1
1 VECTPENDING = 0z000
88 /* USER CODE END 2 */ ISRPENDING = 0
B ISRPREEHPT = (
20 loop */ PENDSTCLR = 0
91 U CODE BEGIN WHILE */ PENDSTSET =0
22 vhile (1) PENDSVCLR = 0
93] PENDSVSET - 0
34 FMIPENDSET = 0
a5 CPUID = 0=411FC231
o as ID_PFRO = 0xD00D0030
s ID_FFRL = 0=00000200
e ID_DFRO = 0z00100000
&) ID_AFRO = 0x00000000
100 [ID_MNFRO = 0=00000030
o, L B ID_HHFR1 = 0x00000000
* [ID_HHFR2 = 0z00000000
i ID_HHFR3 = 0200000000
103 % /** System Clock Configuration ID_ISAR0 = 001141110
104 & 5/ ID_ISARL = 0x02111000
105 wvoid SystemClock Cenfig(veid) ID_ISAR2 = 0=21112231
0601 4 ID_ISAR3 = 0=01111110
F103 a [ol i , - [BID_IsaRt - 0x01310102

3

62/118 AN4989 Rev 3

AN4989 Exception handling

Keil® MDK-Arm pVISION

SCB->CCR can be managed at run time through View -> System Viewer -> Core
Peripheral -> System Control and Configure.

Refer to Figure 43 for details.

Figure 43. Keil® System Control and Configure

System Ctrl / Cfg ﬁ
—System Control

SCB-=5SCR: I[lﬁl:l:l:l:lzl:l[]l

[SLEEPONEXIT
[~ SLEEPDEEP
[SEVOMPEMND

Ir'—li::::nnﬁguraﬂu::r1 Control
SCB->CCR: |0x00000210

[~ NONBASETHRDENA
[~ USERSETMPEND
[T UNALIGN_TRP

[v DIV_O_TRP

[~ BFHFNMIGN

3

AN4989 Rev 3 63/118

Exception handling

AN4989

The fault type can be investigated using Peripherals -> Core Peripherals -> Fault Reports

as shown in Figure 44.

Figure 44. Keil® Fault Reports

Fault Reports

2

Memory Manage Faults

Address SCB->MMFAR: |0xEQ00EDFS

Status SCB->CFSR: [x00 (MMFSR)

[IACCVIOL [MUNSTKERR
[DACCVIOL [MSTKERR
[MMARVALID

Bus Faults

Address SCB->BFAR: |0xEQDOEDFS

Status SCB->CFSR: (BFSR)

[~ IBUSERR [UNSTKERR
[PRECISERR [STKERR
[IMPRECISERR [BFARVALID

Usage Faults
Status SCB-»CFSR: |0x0200 (UFSR)

[UNDEFINSTR [NOCP

[INVSTATE NALIGNED
[INVPC [v DIVBYZERO
Hard Faults

Status SCB->HFSR: |(x40000000

[VECTTBL [DEBUGEVT
[v FORCED

Debug Faults

Status SCB->DFSR: |(x00000007

[+ HALTED [VCATCH
[BKPT [EXTERNAL
[DWTTRAP

Auxiliary Faults

Status: SCB->AFSR: |(x00000000

64/118

AN4989 Rev 3

3

AN4989 Exception handling

STM32CubelDE

At runtime, while debug is in break state, the SCB register can be accessed in read mode or
in write mode through: Window -> Show View -> SFRs as shown in Figure 45.

Figure 45. STM32CubelDE SCB register access

3

B SFRe 1 RO |[Mei %o % |8 14 ¥ = D
| type falter Bet
Register Address Value o
4 o1
w & sce
» W4T CPUID Cre000ed0D Do 10241
Wit ICSR (heeD0DedDd D
i VTOR Oxe000edE (xE000000
i AIRCR Oxe000edDc (xfal50000
» M SCR Cee000wd 10 (2]
» it CCR Oee000ed 14 210
818 SHPR1 OxeD00ed 18 0D
5 i SHPR2 Dxe00ed1c (i)
Wi SHPR3 Dxe000ed20 (%]
Wit SHCSR Cee000wd 24 e
~ T CFSR_UFSA_BFSPMMFE Oxe000ed2B 1]
4 IACCVIOL [:11 D
1 MUMNSTKERR [3:1] (%]
" MSTEERR 4] (1]
" MLSPERR [51] (1]
= MMARVALID [(i)
14 IBUSERR [8:1] (%]
%1 PRECISERR [%1] (%]
1 IMPRECISERR [1e:1] (12%]
™1 UNSTKERR [11:1] e
194 STKERR 1] oD
4 LSPERR [13:1] (i)
4 BRARVALID [151] D
U UNDEFINSTR [16:1]) (]
" INVSTATE [17:1) (]
P INVPC [18:1] [1%1]
4 NOCP [18:1] (i)
W UMALIGNED [241] (i)
"'} DIVBYZERD [25:1] (%)))
M5B] L58
L I 55T
LSE: 25
MASE: 26
Sime: 1
Resst value:]
Access permission: AW
Read action:
Description:
Dinvide by zero usage fault

If you need more informations about the Hardfault,you can first enable faulting or halting
when the processor executes an SDIV or UDIV instruction with a divisor of 0:

SCB->CCR | = 0x01.
At runtime, before pressing “resume” button, open “Fault Analyzer” in

Window ->Show View -> Fault Analyzer

AN4989 Rev 3 65/118

Exception handling AN4989

If the code performs an SDIV or UDIV instruction with a divisor of 0, code stops with
informations in “Fault Analyzer” (see Figure 46).

Figure 46. Fault Analyzer in STM32CubelDE

= Modules "' Registers * SFRs

Register Address Value
“1 DIVBYZER [25:1] Ot

M5B l

LS8
Bit field: DIVBYZERD
LSE: 25
MSE: 26

Fault Analyzer
! Hard Fault Detected

Hard Fault Details

@ Bus, memory management or usage fault (FORCED)

Bus Fault Details

Usage Fault Details

@ Attempt to perform a division by zero (DIVBYZERO)

Memaory Management Fault Details

Register Content During Fault Exception

Name Value

Bisp (MSP) 0x20017fb8
2 (b

a2 el

66/118 AN4989 Rev 3

3

AN4989

Exception handling

3

Independently from the IDE, for projects including the CMSIS library, the content of the
registers in the code can also be printed:

void HardFault Handler (void)

{

volatile uint32_t csfr= SCB-> CSFR ; // load into variable
printf ("SCB-> CSFR 0x%08x \n", SCB-> CSFR) // print
while (1)

{
}
}

The same content can as well be obtained directly from the memory with any memory
browser.

Other faults like UNALIGNED, UNDEFINSTR can be managed in a similar way.

For more details, refer to the relevant programming manual:

e STM32F4 and STM32L4 Series Cortex®-M4 programming manual

e (PM0214)

e STM32F7 Series Cortex®-M7 processor programming manual (PM0253)

Relevant information is also available on partners websites:
e https://www.iar.com
e http://www.keil.com

AN4989 Rev 3 67/118

Printf debugging AN4989

7

Printf debugging

Printf debugging is one of the most straight-forward and used solution in order to start
investigating a non-working system.

This chapter is a getting started guide to quickly setup a printf data path through
semihosting, USART or SWO, benefiting from facilities offered by STMicroelectronics
hardware kits and ecosystem tools.

71 STM32 Virtual COM port driver
STM32 Virtual COM Port Driver (VCP) is a feature supported by ST-LINK/V2-B embedded
in most of recent hardware kits (refer to Section 2.1: Hardware development tools on
page 9). It is a RS232 emulation through ST-LINK USB connection.
On the PC side, this requires driver software package (STSW-STM32102) included in ST-
LINK driver (STSW-0009).
Once the target is connected, it is seen as a serial port on the PC. An example is presented
in Figure 47.
Figure 47. Virtual COM port on Windows® PC
=4 Device Manager =Nl X
File Action View Help
= | @ HE =
4 .¥ Network adapters -

%

4 7T Ports (COM & LPT)

------ '_-'." Bluetooth Device (Personal Area Network)

------ '_-'." Bluetooth Device (RFCOMM Protocol TDI)

------ '-‘:'; Cisco AnyConnect Secure Mobility Client Virtual Miniport Adapter for Windows x64
------ '_-'." Intel(R) 82579LM Gigabit Network Connection

------ '_-'." Intel(R) Centrino(R) Advanced-N 6205

------ '_:." Microsoft Virtual WiFi Miniport Adapter

| Portable Devices

1

»

> D Praocessors

> 4P Security Devices

> 7 Sensors

% Sound. video and aame controllers

68/118

3

AN4989 Rev 3

AN4989 Printf debugging

7.2 Printf via UART

Direct connection from PC UART to board pinout does not work due to signal level
incompatibility.

Take care to use external adapter (such as MAX232, ST3241EB, FTDI USB/UART) or the
USART connected to Virtual COM port.

Trick: Appendix B: Use Nucleo “cuttable” ST-LINK as stand-alone VCP on page 106
explains how to use ST-LINK Nucleo stand-alone part as VCP.

The straight-forward way to set a Serial Com port with PC host is to use the USART

connected to VCP.

USART connected to VCP depends on the hardware Kkit:

e Nucleo-32/Nucleo-64: USARTZ2 - PA2/PA3

e Nucleo-144: USARTS3 - PA9/PA10

e Discovery: not standard. Refer to the board schematics

e EVAL: not standard. Refer to the board schematics. Either the VCP or the RS232
connector can be used

In STM32CubeMX, for Nucleo board, the VCP USART pins (PA2/PA3) are reserved by
default, but required to be enabled by selecting “asynchronous” in USART mode selection
box as shown in Figure 48.

Figure 48. USART Pinout configuration with STM32CubeMX

B o TIM3 pci
H- ¢ TIM4
- © USARTI
£ % USART2
----- Mode :Asynchronous v:
“Hardware Flow Control (R5232) iDisabIe vi
% USART3
i@ use USART_TX |
- & WWDG

a1

c
L
*
=l
3
=
s

[pa uzaun]

Then, set the UART communication settings in Configuration -> USART2 Configuration
-> Parameter Settings as shown in Figure 49.

AN4989 Rev 3 69/118

3

Printf debugging AN4989

Figure 49. USART2 setting with STM32CubeMX

File' Project Window Help

ReRER 60 +-:09 ¢

F'mou‘sl Clock Configuration| Configuration | Fower Consumption Calculator
[configuration
[-MiddleWares
. B FATFS
o [[] user-defined
- % FREERTOS

| [Enabled

|- Peripherals ’ ; A
e [e =
[Activated

" Parameter Settings}| o/’ user Constants | =/ NVIC Settings |« DMA Settings | </ GPIO Settings|

Configure the below parameters :

IWDG
- [] Activated

SYS Search :| Search (CrtF) JES

Timebase Source:Sys Baud Rate 115200 Bits/s
USART2 ‘Word Length 8 Bits (including Parity)
- Mode:Asynchronous Parity None
=- = WWDG Stop Bits 1
[] Activated (= Advanced Parameters
Data Direction Receive and Transmit
Over Sampling 16 Samples
] 1 | »
Restore Default Apply] [0k] [Cancel

Retargeting printf to UART depends on the toolchain.

For IAR™ EWARM and Keil® MDK-Arm uVISION this is done by overriding the stdio fputc
function

#include "stdio.h"

int fputc(int ch, FILE *f)

{

HAL UART Transmit (&UartHandle, (uint8_t *)&ch, 1, OxFFFF);

return ch;
}

For GCC based toolset like STM32CubelDE, two cases can be met.

With syscall.c integrated to the project:
#include "stdio.h"

int _ io putchar(int ch)

{

70/118 AN4989 Rev 3

3

AN4989 Printf debugging
HAL UART_ Transmit (&UartHandle, (uint8 t *)&ch, 1, OXFFFF);
return ch;
}
Without syscall.c integrated, a customized _write function has to be defined:
int write(int file, char *ptr, int len)
{
int Dataldx;
for (Dataldx = 0; Dataldx < len; DataIdx++){ __ io putchar(*ptr++);}
return len;
}
Refer to STM32Cube provided example UART Printf () available for almost all STM32
Series. An example is available in STM32Cube_FW_F3_V1.7.0\Projects\
STM32F303ZE-Nucleo\Examples\UART\UART_Printf.
Caution: USART word length includes parity which is not the case for most of UART terminal. Word
length 8 with parity require 7 bits + parity on terminal side to match.
VCP does not support Word length of 7 bits and below (whatever the parity). Table 5 gives
examples of compatible configurations:
Table 5. STM32 USART vs. PC terminal WordLength example
STM32 UART PC Terminal
Word Length: 8, Parity: Odd Data: 7, Parity: Odd
Word Length: 8, Parity: None Data: 8, Parity: None
Word Length: 9, Parity: Odd Data 8, Parity: Odd
Word Length: 7, Parity: Odd/None Not Working with VCP
7.3 Printf via SWO/SWV

3

Serial Wire Output (SWO) is single pin, asynchronous serial communication channel
available on Cortex-M3/M4/M7 and supported by the main debugger probes.

It is using the ITM (instrumentation trace macrocell) module of the Cortex Core-Sight.

The asynchronous mode (SWO) requires 1 extra pin and is available on all packages for
STM32 based on Cortex-M3, -M4, and -M7.

It is only available if a Serial Wire mode is used. It is not available in JTAG mode.

By default, this pin is NOT assigned. It can be assigned by setting the TRACE_IOEN and
TRACE_MODE bits in the Debug MCU configuration register (DBGMCU_CR). This
configuration has to be done by the debugger host.

Refer to the related chapter of STMicroelectronics reference manual.

In debug context it can be a good alternative to UART in system where pinout constraints
are strong (alternate function preempting UART GPIOs).

AN4989 Rev 3 71118

Printf debugging AN4989

It has to be used in combination with a Serial Wire Viewer (SWV) on host side which
provides the following features:

e PC (Program Counter) sampling

e Event counters that show CPU cycle statistics

o Exception and Interrupt execution with timing statistics

o Trace data - data reads and writes used for timing analysis
e |TM trace information used for simple printf-style debugging

This chapter only addresses the printf-style debugging feature.

In order host debugger can manage flexible pin assignment ensure SWO pin is not used for
other purpose.

In STM32CubeMX:

Select "Trace Asynchronous Sw" in SYS -> Debug selection box as shown in Figure 50.

Figure 50. SWO Pin configuration with STM32CubeMX

i+ @ SDMMLL

[+ & SPI1 %

- & SPI2 8

- & SPI3 -"——sl
(73]
[

® SWPMI1 !' '

EH & SYS
Debug | Trace Asynchronous Sw
|| System Wake-Up 1

[7] System Wake-Up 2

This secures that the PB3 is not allocated to another use. No specific code is generated.
Other init steps are performed by the SWV integrated in the IDE or in the ST-LINK utility.

)

72/118 AN4989 Rev 3

AN4989

Printf debugging

IAR™ EWARM

IAR™ EWARM provides an integrated access to SWO.

Redirection of printf and scanf is possible using Library Configuration options as shown in

Figure 51.

Figure 51. Semihosting/SWO configuration with IAR™ EWARM

-

Options for node "Debug_RTC_F3Nucleo”

=X=)

Category:

General Options -

Static Analysis

Runtime Checking
C/C++ Compiler
Aszembler

Output Converter Library:

Targetl Qutput | Library Configuration LibraryOptionslMISRA—C:m MISH 4 |+

Description:

Custom Build [Full

v] Use the full configuration of the C/C++ runtime library.

Build Actions
Linker
Debugger

Simulator Caonfiguration file:

m

Angel
CMSIS DAP
GDB Server

Full locale interface, C locale, file descriptor support,
multibytes in printf and scanf, and hex floats in strtod.

$TOOLKIT_DIRS\INC\c\DLib_Config_Full.h

D Enable thread supportin library

IAR ROM-monitor
IHet/ITAGIet
J-Link/J-Trace

TI Stellaris

") None
'.é.' Semihosted
|AR breakpoint

Macraigor

PE micro

Library low-level interface implementation

CMSIS

tdout/std
stdouystder [¥] Use CMSIS

(") Via semihosting
[[]DsP library

@) Via SWO

RDI

ST-LINK
Third-Party Driver
TI MSP-FET

Lo JI

Cancel

————————————————————————

Care must be taken that clock setup is correct by using ST-LINK -> Communication Pane

as illustrated in Figure 52.

3

AN4989 Rev 3

73/118

Printf debugging

AN4989

74/118

Figure 52. IAR™ EWARM SWO Clock setting

Options for node "Project”

|

Category: Factary Settings
General Options
Static Analysis
Runtime Checking Communication | Breakpoints
C/C++ Compiler
Assembler Clock setup
Output Converter CPU clock: @7 MHz
Custom Build
Build Acti
o SWOclock [Auto
Linker
Debuager 2000 kHz
Simulator
CADI
CMSIS DAP
GDB Server
I-jet/ITAGjet
Jinkf1-Trace
Log communication
I Stelleris [eg
PE micro $PROJ_DIR$\cspycomm.log
Third-Party Driver
TI MSP-FET
TIXDS
’ Ok] ’ Cancel]

Once configured, IAR™ EWARM properly sets TRACE_IOEN and TRACE_MODE and
configures the related GPIO.

SWO printf occurrences are visible in Terminal 1/0 windows.

Port Stimulus 0 is used by printf and scanf. It is not configurable.

Keil® MDK-Arm pVISION:

In MDK-Arm it is required to redirect printf to SWO by some piece of code following same
model as for UART (Refer to Section 7.2: Printf via UART on page 69)

#include "stdio.h"

int fputc(int ch, FILE *f)

{

ITM_SendChar (ch) ;
return(ch) ;

}

Keil® must be properly configured for the SWO communication to be properly set. An
example is given in Figure 53.

In Projet Option -> Debug -> Probe Settings -> Trace Pane:

1. Tick Trace Enable

2. Enter correct Core Clock

3. Enable ITM Stimulus Port 0

3

AN4989 Rev 3

AN4989

Printf debugging

3

Figure 53. SWO configuration with Keil®

(V.8 s for Target

Device | Target | Output | Listing | User | C/C++ | Asm | Linker Utilties |

" Use Simulator

with restrictions Settings | @ Use: |ST-]_ink Debugger

Ll Settings || ‘

[Limit Speed to Red

¥ Load Application a
Initialization File:
’7
Restore Debug Sesq
[V Breakpoints
V¥ Watch Windov

[V Memory Displa)

CPU DLL: Parg

SARMCM3DLL [-RI

Dialog DLL: Pard

DCMDLL [oC]

[~ Wam f outdated B

Debug Trace | Flash Download |

Core Clock: | 10.000000 MHz [¥ Trace Enable

Trace Clock:| 10.000000 MHz ¥ Use Core Clock

‘Irace Port Timestamps

]Se.'ial Wire Output - UART/NRZ J [V Enable Prescaler; |1 vI
SWO Clock Prescaler: 1 PC Sampling
¥ Configuretarget [Set max Prescaler: [1024°16 ~

SWO Clock: | 10000000 MHz | | [pegogic Pedod: [<Drableds
[~ on Data R/W Sample

ITM Stimulus Ports
3 Port 24 23 Port 16 15

Trace Events

[~ CPI: Cycles per Instruction
[~ EXC: Exception overhead
[~ SLEEP: Sleep Cycles

[~ LSU: Load Store Unit Cycles
[~ FOLD: Folded Instructions
¥ EXCTRC: Exception Tracing

Port a8 7 Port 0

Enable: |(x00000001 o
Privilege: [(x00000000 Port 31.24 [Port 23.16 [~ Port 15.8 Port 7.0 ™
Advanced seffings

™ lgnore packets with no SYNC
[~ Overwrite CYCCNT

ok | Camca | 4 |

SWV viewer is called “Debug (printf) Viewer” and is accessible while in debug through

View -> Serial Windows -> Debug (prinf) Viewer as shown in Figure 54.

Figure 54. Access to SWV in Keil®

Memory WIndows P
Serial Windows P E} UART #1
Analysis Windows =¢ UART #2

Trace

System Viewer

++ Toolb

¥ | Periodic Window Update

»
b | 5} UART #3
»

ox Window

=Z¢ Debug (printf) "u"isfl.‘ver
by’

Tip:

Keil® MDK-Arm MVISION allow to select the Stimulus to display. On the other hand

it is quite straight forward to make some clone of ITM_SendChar() function using
any of the 31 stimulus port. Can be useful in a very verbose system to set a trace

AN4989 Rev 3

75/118

Printf debugging AN4989

library which split trace between stimulus based on their importance (info, debug,
error) or there source.

STM32CubelDE
With STM32CubelDE you also have to redirect printf to SWO by some piece of code.

With syscall.c integrated to the project:
#include "stdio.h"
int _ io putchar(int ch)

{

ITM SendChar (ch) ;

return (ch) ;

}

Without syscall, add:
int _write(int file, char *ptr, int len)

{

int DatalIdx;
for (DatalIdx = 0; DatalIdx < len; DatalIdx++)

{

__io_putchar (*ptr++) ;

}

return len;
}
Enable SWD in Debug configuration ? Debugger pane (see Figure 55).

Core clock must be the same as Cortex clock. You can then start the debug session.

3

76/118 AN4989 Rev 3

AN4989

Printf debugging

3

Figure 55. Enable SWD in STM32CubelDE

EE pebug Configurations o x
Create, manage, and run configurations @
FeEX| B ®- Mame: | swOprintf Debug
type filter text () Main | %% Debugger| b= Startup| B Source | [[] Common
[E] €/C++ Application i
[T] €/Ce+ Attach to Application Serial Wire Viewer (SWV)
[t] C/C++ Postmortem Debugger [Enable
[T] C/C++ Remote Application Clock Settings
[€] GDB Hardware Debugging
Launch Group Core Clock | 80.0 MHz
¥ Launch Group (Deprecated) SWO Clock: | 2000 ~ kHz
v [5TM32 Cortex-M C/C++ Application
[STM32L476G-Discovery Debug Port numben | 61235
[sWOprintf Debug [Wait for syne packet
Device settings
Debug in low power modes: Enable |~
Suspend watchdog counters while halted: No configuration v
Mise
[Verify flash download
1 Enable live expressions
CJLog to file: C:\Users\chloe meunier\ Desktop\SWOprintf\Debug\st-link_gdbserver log.ta rowse "
Reyert
Filter matched 10 of 11 items = Apply
©

Enable SWV ITM Data Console in
Window ->Show View -> SWV -> SWV ITM Data Console as shown in the figure below:

AN4989 Rev 3

77/118

Printf debugging

AN4989

78/118

Figure 56. Enable SWV ITM Data Console in STM32CubelDE

Window Help
Meess Windernw
Editas]
Appearance L]
Shew Veew =
Perspectrve »
Haragation » | =

; Preferences #

OaeInitTypeDefd RCC_Duic E

ClkInitTypebef ROC_Clk 52
PeriphCLEInitTypeDef P o

DscInitStruct . Oacillae *
OseInitStruct HEIState
OacInitStruct HSICalib
OscInitStruct PLL.PLLS
OacInitStruct.PLL.PLLS
DacInitStroct . PLL.PLLM (i
DaeIndtStruct . PLL.PLLN
OscInitStruct PLL.PLLP
OacInitStruct.PLL.PLLD
OacInitStruct PLL.PLLR
HAL_RCC_QscConf ig(BRCC |

‘rer_Handler();

EOHEWE

¥
-
B
[
i
()
=

ClkInitStruct.CleckTyp

ClkInditSeruet . SYSCLKSa
ClkInitStrwet AHBCLKDL
CIkInitStruct. APBLCLED 2y
ClkInitStruect . APBRCLED o

g

Debusg
Debugger Consale
Dissssernbilby
Emorlog
Executsbles
Expressions
Fauls .ﬁm;l‘,’:ﬂ
Linve Expressions
ermary
Memnory Browser
Modules

Cutline
Probiems
Frogress

Project Explarer
Registers.

SFR=

Signals

Static Stack Analyzer
Templates

Trace Contral
Varuables

Oither...

AlteShift-CL B

Al Shift-C, €

AltsShafta L L

Alte Shadte 0, O
AlteShifte 0L X

Alte ShiftaCL V
Alt-Shaft+Q, O

I |

mEr

T

et D

S0V Trace log

SWV Exception Trace log

SWV Exception Timeline Graph
SWV Data Trace

SWY Data Trace Timaline Grapgh
SWV ITM Dats Consale

S0V Saatistical Profdng

CLE
| ¥

i Fault Analyz

Enable ITM Stimulus Port 0 after clicking on “Configure trace” as shown in the below

figure.

AN4989 Rev 3

3

AN4989

Printf debugging

7.4

3

Figure 57. Enable ITM stimulus Port 0 in STM32CubelDE

B Console & Emorlog (! Problems 3 Bxecutables GR DebuggerConsole [] Memory @ Fault Analyzer [E) SWV ITM Data Console 52 E. X|EgE|l =0
Port0 & = i

L

Clock Sestings Trace Events PC Sampling

Core Clock: 16 MHz I CPE Cycles per instruction [[] EXC: Exception overhead [JEnable Resolution: | 16384 Cycles/sample

Clock Prescaler B [C] SLEEP: Sleep cycles [LSU: Load store unit cycles

[_] FOLD: Folded instructions [_] EXETRC: Trace Exceptions Timestamps
SWO Clock: 20000 kHz

[AEnable Prescaler 1 v

Data Trace

Comparator 0 Comparator 1 Comparator 2 Comparator 3
[JEnable [JEnable [JEnable [JEnable
Var/Addr: (0 Var/Addr: [x Var/Addr: (w0 Var/Addr:

Access: | Re

Access: Read/Write Access: Read/Write Access: Read/Write

Size: |W

Size: |Word Size: 'W Sire:

Generate: | Diata Value Generate: | Data Value Generate: Data Vale

Generate: Data Value

ITM Stimulus Ports
Enable port: 31]00O0O0OO024 200000000018 1sOO00O0O000e ?ﬂﬂﬂﬂl’ﬂﬂ

Privileged only ports: []Port31.24 []Port23.16 [JPort15.8 [Port7.0

Cencel

Click on “Start Trace” button

Figure 58. Start Trace button in STM32CubelDE

= 5] SWV ITM Data Consale B w BH| +
Pot0 5

Press “Resume” button, and your printf message is printed in SWV ITM Data Console.

Semihosting

Semihosting is a mechanism that enables code running on an Arm® target to communicate
and use the Input/Output facilities on a host computer that is running a debugger.

Examples of these facilities include keyboard input, screen output, and disk 1/O. For
example, this mechanism can be used to enable functions in the C library, such as
printf () and scanf (). It can also allow to use the screen and keyboard of the host
instead of having a screen and keyboard on the target system.

This is useful because development hardware often does not have all the input and output

facilities of the final system. Semihosting enables the host computer to provide these
facilities.

However, the user has to be aware of the following drawbacks:

e Semihosting only works during a debug session. Otherwise, the program gets stuck in
the first print £ () routine reached.

e Since semihosting uses breakpoint instruction and host dependent code, it has
significant and unpredictable impact on performance.

AN4989 Rev 3 79/118

Printf debugging AN4989

Semihosting depends on the library provided by the IDE. The next sections present how to
set semihosting using the three main IDEs covered in this application note.

7.41 IAR™ EWARM
IAR™ EWARM provides a highly integrated semihosting feature, enabled by default.

Figure 59 shows how to check if it is the case for the project in Options -> General options
-> Library Configuration Pane.

Figure 59. Semihosting configuration in IAR™ EWARM

Options for node "F103" 2L

Category:

-
Static Analysis U
Runtime Checking Target | Output | Library Configuration | Library Options | MISRA-C:2004 | Misi ¢ | *
C/C++ Compiler
Assembler Library: Description:

Output Converter lFuII -] Use the full configuration of the C/C++ runtime library.
Custom Build Full !ocale limerface. Clocale. file descriptorlsupport.
multibytes in printf and scanf, and hexfloats in strtod.

Build Actions

Linker

Debugger
Simulator $TOOLKIT_DIR$\INC\c\DLib_Config_Fullh
Angel
CMSIS DAP ["|Enable thread supportin library

11

GDB Server Library low-level interface implementation CMSIS
IAR ROM-monitor

I4et/ITAGIEt

J-Linkf1-Trace -
T1 stellaris IAR breakpoint ([IViaSWO

N tdout/std
_JMNone stdout/stderr UseCMSIS

@ Semihosted @) Via semihosting DDSP b
ibrary

Macraigor

PE micro

RDI

ST-LINK
Third-Party Driver
TI MSPFET o 0]4 l [Cancel

In such a case, simply use printf () / scanf () functions in the code.

Input and output of the program are displayed in the Terminal I/O window.

7.4.2 Keil® MDK-Arm pVISION

Keil® has no semihosting capability.

3

80/118 AN4989 Rev 3

AN4989

Printf debugging

7.4.3

3

STM32CubelDE

Set linker parameters

First the linker must ignore the default syscalls.c file and has to use the newlib-nano
librairies, which contains printf() function.

in Project -> Properties -> C/C++ General -> Paths and Symbol

Click on the Source Location tab. Click on the arrow near to “[Project name]/Core”, and

select “Filter(empty)”.

Then click on “Edit filter” button and add “syscall.c” to the Exclusion patterns list.

Figure 60. Properties for semihosting in STM32CubelDE- Source Location

08

| type filter text

Resource
Builders
C/C++ Build
v C/Ce+ General
Code Analysis
Documentation
File Types
Formatter
Indexer
Language Mappings
Paths and Symbols
Preprocessor Include Pat
CMSIS-5VD Settings
Project References
Run/Debug Settings

Paths and Symbols

Configuration: |Debug [Active]

~ | | Manage Configurations...

(= Includes # Symbols i Libraries (B Library Paths (2 Sourcelocation [References
Source folders on build path: Add Eolder...
[v .. /Semihosting/Core :
_:7:' Filter (Src\syscalls.c) Link Folder...
(= /Semihosting/Drivers Edit Filter
Delete
Restore Defaults Apply

Apply and Close Cancel

To use semihosting the librdimon must be enabled. Librdimon implements the semihosting
versions of syscalls from newlib.

On the left-side pane, go into C/C++ Build -> Settings and select the Tool Settings tab.

Then, select MCU GCC Linker -> Libraries. In the libraries pane, click the “Add” button and

enter rdimon.

AN4989 Rev 3

81/118

Printf debugging AN4989

Figure 61. Properties for semihosting in STM32CubelDE- Librairies

[Properties for Seminosting o
Settings G
Resource —————————————
Builders (2 MCU Settings Libraries (-1) a8 8 ~
« C/Cs+ Build (& MCU Post build outputs
Build Variables v B MCU GCC Assembler dmen
Enviranment @ General
Logging (% Debugging
Settings (5 Preprocessor
C/Cos General (& Include paths
CHASIS-SVD Settings €3 Miscellaneous
Project References v & MCU GEC Compler
Run/Debug Settings (2 General
(& Debugging
2 Prepracessor
(2 Include paths
(# Optimization
(% Warnings
(# Miscellaneous Library search path (-L) £
~ & MCU GCC Linker
(E General
(Libraries
(# Miscellaneous
.
Next, select MCU GCC Linker -> Miscellaneous while still in the Tool Settings tab.
Click the Add... button and enter -specs=rdimon.specs into the dialog box.
This add the linker flags in order to include the librdimon library.
Figure 62. Properties for semihosting in STM32CubelDE
[Properties for Semihosting O P24
Settings G
Resource
Builders (5 MCU Settings Other flags ~
p (22 MCU Post build outputs
v CiCrs Build
Build Varisbles ~ B MCU GCC Assembler
; (% General
Environment -
Logging (22 Debugging
Settings (& Preprocessor
C/Ce+ General 2 Include paths
CMSIS-SVD Settings @3 Miscellaneous
Project References ~ 8 MCU GEC Compiler
Run/Debug Settings £# General
(# Debugging
(5 Preprocessor
(8 Include paths
(2 Optimization
(58 Wamings
(8 Miscellaneous -
1) MCU GCC Linker Additional object files @
(& General
(2 Libraries
(8 Miscellaneous
o
@ Cancel

82/118 AN4989 Rev 3

3

AN4989

Printf debugging

3

Add printf Code
Above int main(void) (USER CODE 0 section), add:
extern void initialize monitor handles (void) ;

Then configure the semihosting system call: In int main(void) before the while(1) loop
(USER CODE 1 section) add:

Initialise_monitor_handles () ;

Then inside the while(1) loop, add:
Printf (“Hello World!\n”) ;
HAL_Delay (1000) ;

Click Project -> Build Project to compile and link everything.

AN4989 Rev 3 83/118

Printf debugging AN4989

Debug configuration

In Run -> Debug configuration -> Debugger tab, change the debugger probe to ST-LINK
(Open OCD).

In Generator options, choose “Software system reset“as reset Mode.

Figure 63. Semihosting in STM32CubelDE - Debug configuration

[Run Configurations m} X
Create, manage, and run configurations ;—;
= ¥ | 30 Name: |Sem|host|ng Debug ‘
_ [Main| %5 Debugger| b Startup] 5 Source| I Common
[E] C/C++ Application GDE Connection Settings ~
[E] C/C++ Remote Application (®) Autostart local GDB server Host name or IP address | localhost

L Launch Group

B+ Launch Group (Deprecated) (O Connect to remote GDB server Port number 3333

~ [5TM32 Cortex-M C/C++ Application
m Semihosting Debug Debug probe | 5T-LINK (OpenOCD) ~

GDE Server Command Line Options
OpenQCD Setup
OpenOCD Command:

"S{stm32cubeide_openocd_pathfopenocd.exe” Browse...

OpenOCD Options : |

Configuration Script

(® Automated Generation () User Defined Hide generator options...

Script File: | 5{ProjDirPath\Semihosting Debug.cfg Browse... Reload

Generator Options

Mode Setup

Connection Setup
Reset Mode: | Software system reset

Intefface: | Swd ~

F os [Enable debug in low power medes
requency: iz w

Stop watchdog counters when halt

ST-LINK Client Setup

] Shared ST-LINK

. } Revert Apply
Filter matched 6 of 7 items -

‘/?)' Bun Closze

In the Startup tab enter the command: monitor arm semihosting enable.

3

84/118 AN4989 Rev 3

AN4989 Printf debugging

Figure 64. Semihosting in STM32CubelDE - Startup

[T Run Configurations

Create, manage, and run configurations

FReEX B

Name: | Semihosting Debug |

[typefitter test |
€/C++ Application
C/C++ Remote Application
Launch Group
B Launch Group (Deprecated)
[STM32 Cortex-M C/C++ Application
[} Semihosting Debug

[E) Main | %5 Debugger | b» Startup | & Source| 5] Common

Initialization Commands

monitar arm semihosting enable] ‘

Load Image and Symbols

File Build Download Load symbols Add...
[Debug\Semihosting.elf [Semihosting] SeeMaintsb o/ true o true ot
..
Remove
Move up
Move down
< >
Revert Apply
Fitter matched 6 of 7 items
@ Run Close

Click on Debug button.

3

AN4989 Rev 3 85/118

Printf debugging

AN4989

86/118

Run

In the debugging perspective, click Run -> Resume, and you should see “Hello, World!”
being printed at the bottom of the console once per second.

Figure 65. Semihosting in STM32CubelDE - Run

[} Desktop - Semihosting/Core/Src/main.c - STM32CubelDE - m] X
File Edit Source Refactor MNavigate Search Project Run Window Help
Hmiihg Bl a|[Bonmite oS aidi-0-Qi®P AL Fl AR s A
(w2 |
4§ Deb.. 2 Pro = 0 [€] main.c 53 b = 0O =& SFRs i3 = 0 |
AR 15 81 /* USER cc-s’ E Iule / handles (void) ~ | s to ke | 3 4
. . 82 extern void initialise_monitor_handles(void);
vmSemlho.stmg.Dabug[STM32[83 /* USER CODE END © */ - =f
~ (2 Semihosting.elf 84 e filter ot
© Thread #1 (Running: U 550 ype e i
i C/ST/STM32CubelDE_1.3. 86 @rief The application entry point. Register all <
Ry 87 retval int
W ST-LINK (OpenOCD) 55 | »engws Name Typ
= int main(void) ann DAC
it DMAT
/* USER CODE BEGIN 1 */ 34 pMA2
; iEéEgaiize Tﬁgiicﬁ_handles(),‘ & CRC
o ’ A Lo v
/* MCU Configuration----------mmmmmmmm e S & < s

/* Reset of all peripherals, Initializes the Flash interface

HAL Tnit();
v
< >

0 Memory @ Fault Analyz.. ESWVITMDa.. = B

] |BiR @& a9~

B Console 32 | @ Emorlog (2] Problems {3 Executables [Debugger C...

Semihosting Debug [STM32 Cortex-M C/C++ Application] ST-LINK (OpenOCD)
undefined debug reason 7 - target needs reset A
semihosting is enabled

target halted due to debug-request, current mode: Thread
xPSR: 8x@81000808 pc: 0x8880919c msp: 9x208013b8, semihosting
adapter speed: 4628 kHz

target halted due to breakpeint, current mode: Thread

®xPSR: 9x6180@908 pc: 0x2908985@ msp: @0x200913b@, semihosting
Info : block write succeeded

target halted due to debug-request, current mode: Thread |
®PSR: 9x0186@0088 pc: Gx@38@1424 msp: @x20618886, semihosting

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

wWorld!
world!
World!
world!
wWorld!
wWorld!
World!
World!
world!
wWorld!
world!
World!
world!
world!

AN4989 Rev 3

3

AN4989

Debug through hardware exploration

8

8.1

8.2

8.2.1

3

Debug through hardware exploration

As a complement to software instrumentation, a user facing a non-working system may take
great advantage to monitor STM32 pin states (GPIO or clock among others) with external
tools such as oscilloscopes or logic analyzers.

This chapter presents the possibilities offered by STMicroelectronics hardware kits and
integrates a complete tutorial to setup the microcontroller clock output (MCO)

Easy pinout probing with STMicroelectronics hardware kits

All STMicroelectronics hardware kits presented in Section 2.1.1 on page 9 offers easy
pinout access thanks to their Morpho or ARDUINO® connectors.

The coverage of the pinout by the connectors depends on the board itself as well as on the
MCU type. In most cases, a large number of GPIOs are covered.

In order to use this coverage at best, the user is advised to study the board schematics that
show the connections between the MCU pins and the connectors. In association with the
schematics, the board user manual presents the jumper and solder bridge configurations
that modify the routing of pins to connectors.

Microcontroller clock output (MCO)

This feature allows to output one or more internal clock to one or more pins in order to
enable measurement through an external tool, typically an oscilloscope.

It can be useful in debug context in order to check that clock settings is as per expectation
and help to investigate potential error in clock tree initialization code.

Configuration with STM32CubeMX

In STM32CubeMX, MCO stands for master clock output. It is enabled by ticking the Master
Clock Output option in the RCC section as shown in Figure 66.

Figure 66. MCO pin selection in STM32CubeMX

#- OPAMP2

B8 RCC
----- High Speed Clock (HSE) :Disahle T:
----- Low Speed Clock (LSE) :Disahle T:

Master Clock Output RCC_MCO

. [] Audio Clock Input (125_CKIN)
B o RTC
- €3 SPT2

|

This allocates a pin labeled RCC_MCO.

AN4989 Rev 3 87/118

Debug through hardware exploration AN4989

This is typically pin PA8 for all STM32 families.

For Nucleo kits, the PA8 pin is accessible on the D7 pin of the ARDUINO® connector.

For other board pin configuration, please refer to the board schematics.

Depending on board or and chip families, other pins can be used if needed and available.
The Ctrl + click on RCC_MCO pin command sequence under STM32CubeMX highlights in
blue the alternate pin. An example is shown in Figure 67.

Figure 67. MCO alternate pin highlight exemple with L073

RCC_MCO

STM32CubeMX Clock Configuration pane selects the signal to route to pin and the divider
as presented in Figure 68.

88/118 AN4989 Rev 3

3

AN4989 Debug through hardware exploration
Figure 68. MCO Multiplexer in STM32CubeMX Clock Configuration Pane
MCO source Mus
25 HSI
(77 |-t
] LSE
HSE
(MHz) MO 2 w -
(MHz] s » S - PLLOLK
) e ld2am|
L5I
|-
SYSCLK
The divider allows to output a signal frequency compatible with output capabilities.
8.2.2 HAL_RCC_MCOConfig
Independantly of the fact that STM32CubeMX is used or not, MCO configuration is done
using the hal_rcc or LL function:
stm32XXxx_hal_rcc.c/ stm32XXxx_hal_rcc.h
void HAL RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t
RCC_MCODiv)
Examples based on LL drivers are available in STM32Cube libraries (refer to
STM32CubeProjectList.html) which configure the GPIO and the related registers depending
on source and divider.
They also configure the selected GPIO accordingly:
/* Configure the MCOl pin in alternate function mode */
GPIO InitStruct.Pin = MCO1l_PIN;
GPIO InitStruct.Mode = GPIO MODE_AF PP;
GPIO_InitStruct.Speed = GPIO_SPEED HIGH;
GPIO InitStruct.Pull = GPIO NOPULL;
GPIO InitStruct.Alternate = GPIO AFO0_MCO;
HAL GPIO_ Init (MCOl_GPIO_PORT, &GPIO_InitStruct);
Caution: The setting of GPIO speed (OSPEED) must be carefully set.

3

OSPEED setting and maximum output frequency value are described in the datasheet of
the related MCU in chapter I/O port characteristics.

Max Frequency values are given for a typical load of 50 pF or 10 pF.

If the measure is performed with an oscilloscope, the load of the probe circuitry must be
taken into account.

AN4989 Rev 3 89/118

Debug through hardware exploration AN4989

8.2.3

Note:

90/118

If the frequency of the signal under observation exceeds the GPIO capability (e.g. 216 MHz
Sysclock on F7 while GPIO maximum frequency is 100 MHz), use a divider to produce a
suitable signal.

The default value in RCC HAL function is the highest (which is good).

In case of a STM32CubeMX generated project, be aware that default value applied in
generated MX GPIO init () function (executed after MCO config) is the lowest.

In case the output clock is higher than 1 MHz, it is recommended to change this.

Atoo low OSPEED setting can be suspected in case no signal or very noisy/flatten signal
(small amplitude).

A too high setting can be suspected if a signal with a long and high amplitude dumping
oscillation is observed (overshoot / undershoot).

STM32 Series differences

STM32L4 Series also provides an LSCO (Low Speed Clock Output) on PA2 in order to
output LSE or LSI, same as MCO, but with benefit to be still available during stop and
standby mode.

Refer to section 6.2.15 Clock-out capability of STMicroelectronics reference manual
STM32L4x5 and STM32L4x6 advanced Arm®-based 32-bit MCUs (RM035) for details.
HAL Function to call is:

void HAL RCCEx_EnableLSCO (uint32 t LSCOSource)

in stm32l4xx_hal_rcc_ex.c/.h

LSCO is conflicting with UART2 TX (PA2). On Nucleo-64 board, the use of the LSCO board
use and the use of the ST-LINK VCP are mutually exclusive.

SB63 must be set in order to get the LSCO signal available on Morpho and ARDUINO®
connectors.
Refer to the board user manual for details.

STM32F4 and STM32F7 Series devices provide two different MCO outputs given choice of
four clocks each as shown in Figure 69. Refer also to Appendix D: Cortex®-M debug
capabilities reminder on page 116.

3

AN4989 Rev 3

AN4989 Debug through hardware exploration

Figure 69. STM32F4/F7 dual MCO capabilities

MCO1 source Mux

LSE
-

HSE
-

(MHz) MCOL1 [16 -+ [1 - = HSI
PLLOLK
| —————

MCO2 source Mux

SYSCLK
D -—
PLLIZSR

(MHz) MCO2 [li4- 15 - [1 v e HSE
-
PLLOLK

- e—

3

AN4989 Rev 3 91/118

Dual-Core microcontroller debugging AN4989

9

Note:

92/118

Dual-Core microcontroller debugging

STM32H7x5/x7 Series are dual core microcontrollers using heterogeneous core
architecture: An Arm Cortex-M7 core and an Arm Cortex-M4 core.

Debug process is different for these dual core microcontrollers as we need a simultaneous
debug of both cores using a single hardware debug probe.

Refer to AN5286 and AN5361, both available on st.com which explain how to proceed to
debug dual core with IAR™ EWARM (AN5286), MDK-Arm (AN5286) and STM32CubelDE
(AN5361).

Dual debug is supported using
— STM32CubelDE, IAR™ EWARM starting from version 8.30, or MDK-Arm version v5.25 and later
— ST-Link server starting from version v1.1.1-3

3

AN4989 Rev 3

AN4989

From debug to release

10

3

From debug to release

It is important to have in mind that most of technics presented in this AN and suitable for
debugging have to be properly cleaned to prevent problem while releasing the application.

The following action list can be used as a checklist helping to avoid the most common
problems:

Remove software BKPT instructions or take care to let them inside #ifdef DEBUG
statements.

Ensure printf () uses available data path on final product.
Semihosting and SWO cause hardfault otherwise.

Reestablish Code Optimization level.
Implement proper Fault Handlers.
Reset DBGMCU registers to default.

AN4989 Rev 3 93/118

Troubleshooting

AN4989

1 Troubleshooting

Table 6 summarizes solutions to overcome some of the most frequent issues faced during

debug setting and operation.

Table 6. Troubleshooting

Problem

Solution

Connection with target lost during debug of low-power
system

Ensure debug in low-power in DBGMCU register is
enabled.

Ensure SWD pin not set in analog state.

Refer to Section 4.1: SWD/JTAG pinout and to
Section 4.3: Low-power case.

Fail to get printf via SWO

Refer to Section 7.3: Printf via SWO/SWV.

An unexpected power consumption is measured for a
low-power application.

Check that low-power debug in DBGMCU register is
OFF. Beware that this register is reset only with a POR
(power-on reset).

Refer to Section 4.3.

Fail to connect to a board with Normal/System Reset

Try ConnectUnderReset / Hardware Reset connection
mode. This resets SWD connection in case it has been
disabled by application.

Refer to Section 4.2.

Fail to connect on board using
ConnectUnderReset/Hardware using ST-LINK

Ensure NRST of ST-LINK is properly connected to MCU
NRST (e.g. check SB12 for Nucleo).

Fail to see clock signal on MCO output

Ensure that the clock configured to MCO is in the
supported range of the GPIO and that the OSPEED
setting is correct.

Refer to Section 8.2.

Impossible to evaluate a value or a variable, or
impossible to set a breakpoint at a specific line in code

Compiler optimization is probably enabled. Remove it.
Refer to Chapter 3: Compiling for debug.

94/118

AN4989 Rev 3

3

AN4989 Managing DBGMCU registers

Appendix A Managing DBGMCU registers

This appendix provides a tutorial for the different ways to Read/Write the DBGMCU
registers with various tools and IDEs.

A1 By software

HAL and LL provide functions to set/reset DBGMCU registers.

Refer to STM32Cube\Repository\STM32Cube_FW_[MCU]
_[Version]\Drivers\STM32[MCU]xx_HAL_Driver\ STM32[MCU]xx_User_Manual.chm

Figure 70 and Figure 71 show the positions of the DBGMCU registers iwithin the LL and

HAL libraries.
Figure 70. DBMCU Register LL Library Functions
-2 P
= ([SYSTEM

@ SYSTEM Private Constants

@ SYSTEM Exported Constants s
= (1 SYSTEM Exported Functions
@ SYSCFG _ STA
=) DBGMCU
= I Functions
[E] LL_DBGMCU_ABP1_GRP1_FreezePeriph .
@ LL_DBGMCU_ABP1_GRP1_UnFreezePeriph Refers

£ LL_DBEGMCU_ABP2_GRP1_FreezePeriph (
@ LL_DBGMCU_ABP2_GRP1_UnFreezePeriph
B LL_OBGMCU_DisableDBEGSleepMode Retur
@ LL_DBGMCU_DisableDBEGStandbyMode
= LL_DBGMCU_DisableDBGStopMode

[£] LL_DBGMCU_EnableDBGSleepMode Definitio
@ LL_DBGMCU_EnableDBEGStandbyMode
@ LL_DBGMCU_EnableDEGStopMode

[£] LL_DBGMCU_GetDevicelD _ STA
@ LL_DBEGMCU_GetRevisionlD
@ FLASH Get Wak

— ol Tima

3

AN4989 Rev 3 95/118

Managing DBGMCU registers AN4989
Figure 71. DBGMCU_CR HAL Library Functions
= I Madules Returr
= 3 STM32L0x¢_HAL_Driver
= ([HAL -
21 HAL Private || | Pennitio
@ HAL Exported Constants
= [Ill HAL Exported Macros
@ Defines =t FY
= 0 HAL Exported Functions
@ Initialization and de-initialization functions Get Star
= @ Penphergl Control functions Refere
= Cﬂl Functions ¢
[HAL_DBGMCU_DBG_DisableLowPowerCaonfig
[HAL_DBGMCU_DBG_EnablelowPowerConfig Returr
[HAL_DBGMCU_DisableDEGS|eepMode
[E] HAL_DBGMCU_DisableDBGStandbyMode
B HAL_DBGMCU_DisableDBGStopMode Definitio
] HAL_DBGMCU_EnableDEGSleepMode
5 HAL_DBGMCU_EnableDBGStandbyMode
[E] HAL_DBGMCU_EnableDBGStopMode __ STAl
[E] HAL_Delay
E] HAL_GetDEVID Indicate

A.2

96/118

[£] HAL_GetHalVersion

For MO Cortex based families (LO/FO) DBGMCU module need to be clocked by setting bit 22
of register RCC_APB2ENR (refer to the corresponding reference manual) prior to be

written.

RCC->APB2ENR |= RCC_APB2ENR DBGMCUEN;

Some HAL macros are also available to Enable/Disable this clock.

___HAL RCC_DBGMCU_ CLK_ENABLE () ;

HAL DBGMCU_EnableDBGStopMode () ;
HAL DBGMCU_EnableDBGStandbyMode () ;
HAL DBGMCU_EnableDBGSleepMode () ;

__HAL_RCC_DBGMCU CLK DISABLE () ;

By debugger

In order to avoid debugging specific lines in the source code, there are several possibilities

to set DBGMCU registers through debugger interfaces or scripts.

AN4989 Rev 3

3

AN4989

Managing DBGMCU registers

3

IAR™ EWARM

Read/Write of DBGMCU registers is possible through the register window as shown in

Figure 72:

Figure 72. Access to DBGMCU register with IAR™ EWARM

Register

DBG

v| hACL

IDCODE
CICR
— DBG_SLEEP

DBG_STOP
DBG_STAHNDBY
TRACE TOEN
TRACE HODE
DBG_IVDG STOP
DBG_WVDG_STOP
DBG_TIK1_STOP
DBG_TIHZ2_ STOP
DBG_TIH3_STOP
DBG_TIH4_ STOP
DBG_CAN1_STOP

DBG_I2C1_SHBUS _TIMEOUT
DBG_I2C2_ SHBUS TIMEOUT

DBG_TIHS_STOP
DBG_TIHS_STOP
DBG_TIHe_ STOP
DBG_TIH?_STOP
DBG_CANZ STOP

0=20036410
Ox00000100

]
[

|
Lo s Y e Y e R e e s Y s Y e Y e e I e R s Y o Y e O o I e

In case a more permanent setup is required EWARM C-SPY® debugger macros enable to
define execUserSetup (), which is executed at debugger start prior to program execution.

Figure 73 shows the Project Option Debugger -> Setup Pane.

AN4989 Rev 3

97/118

Managing DBGMCU registers

AN4989

Note:

98/118

Figure 73. EWARM C-SPY® Macro script setting

-

Options for node "Praoject”

|

Categary:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Quiput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GDB Server
IAR ROM-monitor
I-jet/ITAGiet
J-Link/J-Trace
TI Stellaris
Macraigor
PE micro
ROI
ST-LINK
Third-Party Driver
TI MSPFET

»

Setup | Download | Images | Extra Options | Multicore | Plugins|

Factory Setings

Driver Bun to
[ST-LINK v main

Setup macros

[¥]Use macro file(s)

$F’ROJ_DIR\MyJZ)BGMCU_Setup_Macro.mac

m

) @)

Device description file
["] override default
$TOCOLKIT_DIR$\CONFIG\debuggen ST\STM32L073RZ. ddf

- [oK

Cancel]

A basic sample code of execUserSetup () function used to enable low-power debug on
LO is provided below:

execUserSetup () {/* Write a message to the debug log */
__message "LO DBGMCU Setup IAR Macro \n";

___writeMemory32

___writeMemory32
Debug in DBG_CR

___writeMemory32
Stop Enable

}

(0x00400000, 0x40021034, "Memory") ;

// Enable clock DBG

(0x00000007, 0x40015804, "Memory"); // Enable low-power

(0x00000001, 0x40015808, "Memory"); // DBG APBl FZ Timer2

For further information about feature offer by C-SPY® macros please refer to C-SPY®
Debugging Guide available in IAR Help Menu and on www.iar.com.

IAR™ EWARM enables Low-Power debug by default if connected with I-jet™ or cmis-dap

compliant probes.

AN4989 Rev 3

3

AN4989

Managing DBGMCU registers

3

Keil® MDK-Arm pVision

At runtime, access to the DBGMCU register is possible through View -> System Viewer ->

DBG.

Figure 74. Accessing DBGMCU register in Keil® MDK-Arm MVision (1/2)

E C\Users\gallieno\workspace\F103\MDK-ARI

File Edit [View] Project Flash Debug Perig

| = || ¥ | Status Bar

| B
Registers

Register
R4

R5

R6

R7

R8

R9

R10:

R11

R12

R13

R14

R15
+-xPS
=~ Bankeg
MSE

PSF

= System
BAS

PRIl

FAL

COR

= Internal
Moc

Priv

Stac

Stat

el @E gXoEs =&

sy
v

Toolbars

Project Window

Books Window
Functions Window
Templates Window
Source Browser Window
Build Output Window
Error List Window

Find In Files Window

Command Window
Disassembly Window
Symbols Window
Registers Window
Call Stack Window
Watch Windows
Memory Windows
Serial Windows
Analysis Windows
Trace

System Viewer

Toolbox Window

Periodic Window Update

v v vy vy v v

Core Peripherals

ADC
AFIO
BKP
CAN
CRC
DAC
DBG
DMA
EXTI
FLASH
FSMC
GPIO
12C
wWDG
NVIC
PWR
RCC
RTC
SDIO
SPI
TIM
USART
USB
WWDG

4
»

Sec

Command

109.29573710

= Registers

|I_oad "F103\\F103.axf"

AN4989 Rev 3

99/118

Managing DBGMCU registers AN4989

100/118

Figure 75. Accessing DBGMCU register in Keil® MDK-Arm MVision (2/2))

DBG a
v]
Property Value
= IDCODE 0x20036410
=-CR 000000300
DBG_SLEEP [
DBG_STOP [

DBG_STANDBY |

TRACEIOEN [

TRACE MODE 0x00
DBG_IWDG_STOP [v

DBG_WWDG_ST...|
DBG_TIM1_STOP
DBG_TIM2 STOP
DBG_TIM3_STOP
DBG._TIM4 STOP
DBG_CANL_STOP [
DBG_I2C1 SMB.. [
DBG_I2C2 SMB... [
DBG_TIM8_STOP |
DBG_TIM5_STOP [
DBG_TIM6_STOP [
DBG_TIM7_STOP [
DBG_CAN2 STOP [

e s

Each bit in the register can be set or reset independently.
For a permanent debug configuration, use Keil® MDK-Arm pVision initialization file
capability.

Debugger script files are plain text files that contain debugger commands. These files are
not created by the tools. The user must create them to suit his specific needs. Typically, they
are used to configure the debugger or to setup or initialize something prior to running the
program.

Figure 76 shows initialization script setting in Project option ->Debug Pane.

)

AN4989 Rev 3

AN4989 Managing DBGMCU registers

Figure 76. Keil® Initialization script setting

ﬂ Options for Target 'STM32L073RZ_NUCLECQ' P4

Device] Targetl Outputl Listingl User] C,’CH] Asm l Linker Debug lUthitiesl

(" Use Simulator with restrictions Settings ® Use: |ST-Link Debugger ﬂ Settings
[Limit Speed to Real-Time
[+ Load Application at Stariup [+ Runto main() [+ Load Application at Startup [v" Runto main()
Initialization File: Initialization File:
J [\DGBMCUini J Edit..
Restore Debug Session Settings Restore Debug Session Settings
[+ Breakpoints [v Toolbox [v Breakpoints [v Toolbox

Sample code for Init file setting DBGMCU registers on M0 based MCU (Clock enabling)
FUNC void DBGMCUSetup (void)

// DBGMCU configuration

_WDWORD (0x40021034, 0x00400000); // Enable clock DBG
_ WDWORD (0x40015804, 0x00000007); // DBG CR

_WDWORD (0x40015808, 0x00000001); // DBG APBl FZ

}

DBGMCUSetup () ;

For further information regarding Keil® MDK-Arm pVision initialization script, refer to
http://www.keil.com.

3

AN4989 Rev 3 101/118

Managing DBGMCU registers AN4989

102/118

STM32CubelDE

By default, STM32CubelDEenable Low-Power debug. This default setting can be changed
through Run->Debug Configurations->Debugger Pane.

e Setting up with OpenOCD server

By clicking on the Show generator options as presented in the figure below.

Figure 77. Access to Generator Options in STM32CubelDE V2.0.0

L Debug Configurations [m] x
Create, and run confi i ﬁr
ERCEER JRSEE: Mame: | STM32L476RG_NUCLEO Debug
|l,—u:f\ ter text [5) Main | %% Debugger B+ Startup| % Source [T] Commen
[E] C/C++ Application GDB Connection Settings -
__‘.L_| C/C++ Attach to Application (®) Autostart local GDB server Host name or P address localhost
[€] C/C++ Postmortem Debugger
[E] C/C++ Remote Application () Connect to remote GDB server Port number 3333
[€] GDB Hardware Debugging

= Launch Group Debug probe §T—

Launch Group (Deprecated)
~ [5TM32 Cortex-M C/C++ Application
[STM32L476RG_NUCLEO Debug

OpenOCD Setup

Open0CD Command:

| "S{stm32cubeide_openocd_path\openocd.exe” Browse...

OpenOCD Options : |

Configuration Script
(®) Autorated Generation |C) User Defined Show generator options...
Script File: | ${ProjDirPath}\STM32L476RG_NUCLED Debug.cfg Browse. Reload

ST-LINK Client Setup

[[]Shared ST-LINK v

Revert A
Filter matched 9 of 10 items el PPy

oy

DBGMCU options are available under Reset Mode in the Mode Setup group as shown in
Figure 78.

3

AN4989 Rev 3

AN4989 Managing DBGMCU registers

Figure 78. Generator Options debug MCU in STM32CubelDE

3

[Z Debug Configurations [m] *
Create, and run cenfig B
CRECEER AR R Name: | STM32L476RG_NUCLEO Debug
[type filter text ||| & Main %5 Debugger| & Startup & Source| [[] Commeon
[€] C/C++ Application GDB Connection Settings
[E] C/C++ Attach to Application (®) Autostart local GDB server Host name or IP address localhost
[€] C/C++ Postmortem Debugger
[E] C/Ce++ Remote Application () Connect to remote GDB server Port number 3333
[£] GDB Hardware Debugging
2 Launch Group Debug probe | ST-LINK (Open0OCD) v
= Launch Group {Deprecated) GDB Server Command Line Options
v [STM32 Cortex-M C/C++ Application Open0CD Setup
[[T3 STM32L476RG_NUCLEQ Debug
OpenOCD Command:
“§{stm32cubeide_openocd_pathilopenocd.exe” | | Browse...
OpenOCD Options : | |
Configuration Script
(® Automated Generation (C) User Defined Hide generator options...
Scnpt File: | ${ProjDirPath\STM32L476RG_NUCLEO Debug.cfg Browse... Reload
Generator Options
Mode Setup
Connection Setup
Reset Mode: Connect under reset ~
Interface: | Swd
Frequency: |8 MHz [Enable debug in low power modes
[Stop watchdog counters when halt
5T-LINK Client Setup
[] shared ST-LINK
Revert A
Filter matched 9 of 10 items = .
@ Close

AN4989 Rev 3

103/118

Managing DBGMCU registers

AN4989

Figure 79. Access to DBGMCU settings with STM32CubelDE V1.3.0

E Debug Configurations

Create, ge, and run ¢ igurations
B3 X B3~

[type filter text

[T] C/C++ Application
[€] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[T] €/C++ Remote Application
[T] GDB Hardware Debugging
@ Launch Group
> Launch Group (Deprecated)
v [STM32 Cortex-M C/C++ Application
[STM32L476RG_NUCLED Debug

Filter matched 9 of 10 items

A
.\?/.

Name: | STM32L476RG_NUCLEQ Debug

(2 Main #Debugger @ Startup | B Source [T Common
e o e

CCC s U .

Reset behaviour

Type: | Software system reset -~ Halt all cores

Serial Wire Viewer (SWV)
[JEnable
Clock Settings

Device settings
Debug in low power modes: Enable

Suspend watchdog counters while halted: | Disable

Misc
Verify flash download

Enable live expressions

Revert

Apply

Close

If needed, the DBGMCU value can be changed at run time through the 1/0 Registers
window as shown in Figure 80.

104/118

AN4989 Rev 3

3

AN4989 Managing DBGMCU registers

Figure 80. Runtime R/W access to DBGMCU register with SSTM32CubelDE

B Modules ¥iReqisters = 5FHs &2 RD [[% % % | & S

| type filter text

Register Address Value M
» &% DBGMCL
HDCODE (reel42000 Q10076415
« WCR (el042004 0:7

" DBG_SLEEP [0:1] 01
" DBG_STOP [1:1] Ot

"t DBG_STAMDEY [2:1] 01
" TRACE_IDEN [5:1] D
" TRACE MODE [6:2] (Ol
I APRY FART [el4 2008 Q1800
i APRY FFR (rea(04200c Ol
i APRZ FIR (0042010 Q) W
MSE |00 OO | 3110 O {0 D DD O 0 (O -"'IL,‘:;E‘
Bit field: DBG_SLEEP A
158 0
MSE: 1
Size: 1
Reset value: el
Access permission: Ry
Read action:
W
Note: All DBGMCU registers values are kept while reset. Pay attention to not let a debug or

unwanted state when returning to normal execution. (refer to Chapter 9: Dual-Core
microcontroller debugging on page 92).

3

AN4989 Rev 3 105/118

Use Nucleo “cuttable” ST-LINK as stand-alone VCP AN4989

Appendix B Use Nucleo “cuttable” ST-LINK as stand-

106/118

alone VCP

As stated in Section 7.2: Printf via UART on page 69, it is required to have an adapter
between MCU and PC to setup a proper serial connection.

Design constraints may prevent to use the default UART connected to VCP, or may require
another serial connection with the PC.

In such a case, it is simpler and cheaper to use another Nucleo board instead of getting the
appropriate RS232 level shifter.

The "Cuttable PCB" capabilities of the Nucleo-64 and Nucleo-144 boards represent their
capacity to disconnect on-board ST-LINK from STM32 application part.

The simple way to disconnect the ST-LINK part from the MCU application part is to power off
the MCU by removing jumper J5. This is indicated by the fact that LED LD3 is off when a
USB cable is connected. This configuration is presented in As show in Figure 81.

Figure 81. ST-LINK cuttable part of Nucleo

J5 unplugged

LD3 off

In this case the ST-LINK part can be used as a stand-alone module.

1. As debugger interface to program and debug an external application as documented in
the user manual

— STM32 Nucleo-144 board: section 6.3.4 of Using ST-LINK/V2-1 to program and
debug an external STM32 application (UM1974)

— STMB32 Nucleo-64 board: Using ST-LINK/V2-1 to program and debug an external
STM32 application (UM1724)

2. As an alternative and/or additional Virtual COM port

AN4989 Rev 3 ‘Yl

AN4989

Use Nucleo “cuttable” ST-LINK as stand-alone VCP

Any available UART of the STM32 application can be connected to the CN3 connector of
the ST-LINK part.

Figure 82 illustrates a project using NUCLEO-F302R8 is using ST-LINK part of a
NUCLEO-L476RG for connection of UART1 to the host.

UART1 RX PC5 is routed via Morpho Connector CN10 Pin 6 to CN3 TX of
NUCLEO-L476RG ST-LINK.

UART1 TX PC4 is routed via Morpho Connector CN10 Pin 34 to CN3 RX of
NUCLEO-L476RG ST-LINK.

Figure 82. Using ST-LINK stand-alone part of Nucleo-L476RG as VCP

N
- :-;;../';'.“ ‘
, i FEEEEE {1\

O % Qe
2 -
"
2 cEo 2 E |
B STl |
TRC ¢
oTe Il
_‘) |
.
k] wiR
t a
t 9
5 oW

= e ¥ L

3

With this setup, on the PC side, two Virtual COM ports are available with potentially two
different serial channels:

1. Nucleo-F302R8 UART2 (native default VCP) to COM4
2. Nucleo-F302R8 UART1 (VCP through Nucleo-L476RG) to COM8

AN4989 Rev 3 107/118

Use Nucleo “cuttable” ST-LINK as stand-alone VCP AN4989

Figure 83. Virtual COM port on PC side

s

Tera Term: New connection ﬁ

O TCPHP Host: |localhost -

History
- |22
Service: () Telnet TCPpurts
@ SSH SSH version: |SSH2 =
Other
Protocol: |UNSPEC ~
@ Serial Port: [COM1: Communications Port (COM1) v]

COM1: Communications Port (COM1)

COM3
COM4: STMicroelectronics STLink Yirtual COM Port [COMA4)
COMB: STMicroelectronics STLink Virtual COM Port (COMB)

Note: This usage implies to have several targets connected to a single host PC.

In order to properly identify the target and the VCP, refer to Appendix C: Managing various
targets on the same PC.

108/118 AN4989 Rev 3

3

AN4989 Managing various targets on the same PC

Appendix C Managing various targets on the same PC

This appendix provides hints to identify and control the connection to a specific target
among several ones using ST-LINK probe.

Each ST-LINK connection is identified by a serial number.

In order to correlate a serial number with a board, it is advised to use
STM32CubeProgrammer.

At the top of the screen, the serial number pick list contains all connected ST-LINK probes.
By selecting one, access to the target is generated, making blinking of the related ST-LINK
LED switch from red to green.

Figure 84. STM32CubeProgrammer target selection pick list

[sTM32CubeProgrammer

| vescrrsss15466TRET 125833 | NUCLED-L47

OSTTFR4G535188508T172407 | 3204766100

Mormal

Q

Software reset

Disabled

Lag Verbosity level '@ 1 2 3

11:58:33 : STM32CubeProgrammer API v2.5.0 P
11:58:33 : ST=LINK error (DEV_CONNECT_ERR) o
10:35:42 : ST-LINK error (DEV_CONNECT_ERR) o

Once the target is identified, it is possible to copy the S/N from the console in the clip-board
as shown in Figure 85.

3

AN4989 Rev 3 109/118

Managing various targets on the same PC AN4989

Figure 85. Getting target ST-LINK S/N from the console

[sTM32CubeProgrammer - o x

e SHO Y

@ Connected

0x0800... 2001... 0800... 0B800... 0800...
0x0800... 0800... 0800... 0800... 0000... !...#...%..
0x0800... 0000... 0000... 0000... 0800...

0x0800... 0800... 0000... O0B00... 0800... J...cuvidinu—u.n
M NARNN NANN NANN nann naNN L o TR o I +

Log Verbosity level (@ 1 2

11:58:33 : 5TM32CubeProgrammer API w2.5.0
: ST-LINK error (DEV_CONNECT_ERR)

WK SN OBE6CFF565154667867125833

: NUCLEC-L47ERG

H T 3.26V

: SWD fregq : 4000 KHz

7 : Connect mode: Normal
: Reset mode : Software reset
: Device ID : Ox415

7 t Revision ID : Rev 4

: UPLOADING OPTION BYTES DATA ...

: Bank : Ox00

: Address : 0x40022020

: Size : 20 Bytes

: Bank : Ox01

: Address : 0x40022044

: 5ize : 16 Bytes

: UPLOADING ...

: S5ize : 1024 Bytes

140 : Address : 0x8000000

10:40:38 : Read progress:

10:40:38 : Time elapsed during the read operation is: 00:00:00.007

The next sections detail the selection of a specific target with each of the main IDEs
considered in this application note.

IAR™ EWARM

The first time a debug session is launched while several targets are connected, a Debug
Probe Selection window pops up.

A list of connected targets is displayed, identified by the last four bytes of the ST-LINK S/N
as illustrated in Figure 86.

Figure 86. IAR™ EWARM Debug Probe Selection pop-up window

B ' Debug Probe Selection -4

Please select one of the following found probe(s)

ey rm—

003700213038510734333935 NUCLEO-H723ZIG ST-LINKAS

066CFF565154667867125833 NUCLED-L476RG ST-LINK/V2-1 Cancel

Copy Serial No.

Edit Nickname

It is recommended to use the Edit Nickname feature to ease board identification in
anticipation of further connection as shown in Figure 87.

3

110/118 AN4989 Rev 3

AN4989

Managing various targets on the same PC

3

Figure 87. IAR™ EWARM Debug Probe Selection with nickname

-

Debug Probe Selection

Please select one of the following found probe(s)

67073737 [MUCLED-L476RG] (ST-Link/v2-1)

P

Edit Nickname

K

Cancel

Important: The pop-up window is displayed only at first time. The selection made is then
applied by default to further connections. Changing this initial selection requires that the
"Debug Probe Selection" display is forced by setting the "Always prompt for probe selection”
option in Option -> ST-LINK -> Setup as shown in Figure 88.

Figure 88. Probe selection prompt setting on IAR™ EWARM

Options for node "Project”

Category:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Qutput Conwerter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDE Server
I-et/ITAGjet
Jink/J-Trace
TI Stellaris
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

Setup |Ccmmunication Breakpoints|

Factory Settings

Emulator

ST-LINKwE Serial no:

([¥] Atways promptfor probe selection)

Reset

’Connectduring reset

v

Interface Access Port
) JTAG Interface speed @ Auto
©swD ©speciy °
OK] ’ Cancel

AN4989 Rev 3

111/118

Managing various targets on the same PC AN4989

Keil® MDK-Arm pVision

The list of connected targets is visible in ST-LINK debug pane (Options -> Debug -> ST-
LINK -> Settings -> Debug Pane) as presented in Figure 89.

Figure 89. Keil® ST-LINK selection

r B
Cortex-M Target Driver Setup [ﬁ

Debug] Trace] Flash Download]

Debug Adapter -SW Device

ULl S T-LINK/V2-1 '1 IDCODE | Device Name love
Serial Mumber: SWDIO 0x2BA01477 ARM CoreSight SW-DP
J (668FF565251887067012659

HW Version: 1\4’2—1

FW Version: 1V2J25Mi4 & Automatic!
Poit m bdanual Cor ian Hetite Name |
Max Clock: m i ‘ =l ‘ tHE I
Debug-
— Connect & Reset Options - — Cache Options Download Options-
Connect]under Reset :_J Reset: 1Autodelect :_J [Cache Code [Verify Code Download
[l Ftastt e Coraet [« Cache Memory [~ Download to Flash

OK | Annuler | ‘

In the Debug Adapter section, the pick list allows to select among all connected targets.

At selection it can be observed a brief activity of the ST-LINK LED of the related board and
the Serial Number is displayed.

The selection is stored for the next connections.
STM32CubelDE

If you try to launch a debug session with two ST-LINK connected, a pop-up message appear
as shown in the figure below:

3

112/118 AN4989 Rev 3

AN4989 Managing various targets on the same PC

Figure 90. Error message for multiple ST-LINK detected in STM32CubelDE

[T Problem Occurred — O >
I.-"'_"‘-.I ‘Launching STM32L476RG_MUCLED Debug' has
encountered a problem.

Error in final launch sequence:

Failed to start GDB server

o

Error in final launch sequence:

Failed to start GDB server
Failed to start GDB server
Errcr in initializing 5T-LIMNK device,
Reason: (16) Multiple 5T-LINKs detected.
Please specify the serial number in the debug configuration.

e Setting up with OpenOCD
rit is possible to force the connection to a specific target using the ST-LINK S/N.

In Run -> Debug Configurations -> Debugger Pane, add the following OpenOCD option:
-c¢ hla_serial [ST-LINK S/N]

Figure below illustrates the setting of an OpenOCD option for forcing a connection.

3

AN4989 Rev 3 113/118

Managing various targets on the same PC

AN4989

114/118

Figure 91. Forcing specific ST-LINK S/N with STM32CubelDE with OpenOCD option

L Debug Configurations [m]

Create, manage, and run configurations

BeEX| B3~ Mame: | STM32L476RG_NUCLEO Debug
type filter text | [F] Main | %5 Debugger @ Startup | i Source| 7] Common
[€] C/C++ Application GDB Cennection Settings
[E] C/C++ Attach to Application (®) Autostart local GDE server Host name or IP address localhost

[E] ¢/C++ Postmortem Debugger

[E] C/C++ Remote Application (O Connect to remote GDB server Port number 3333
[c] GDB Hardware Debugging
% Launch Group Debug probe | ST-LINK (OpenOCD) v
@ Launch Group (Deprecated) GDB Server Command Line Options
~ L5 STM32 Cortex-M C/C++ Applic
Open0OCD Set
[T STM32L476RG_NUCLEO Det a2t -
Open0CD Command:
"8{stm32cubeide_openocd_path}\openocd.exe” Browse...

OpenOCD Options : | "-c hla_serial 066CFF565154667867125833']

Configuration Script

(@) Automated Generation () User Defined Show generator options...

Script File: | ${ProjDirPath\STM32L476RG_NUCLEO Debug.cfg | Browse... Reload
ST=1 INK (lient Setin

€ >
Filter matched 9 of 10 items

Revert Apply

)
@

e Setting up with ST-LINK GDB server

AN4989 Rev 3

3

AN4989

Managing various targets on the same PC

Figure 92. Forcing specific ST-LINK S/N with STM32CubelDE with ST-LINK GDB server

3

L Debug Configurations O X
Create, manage, and run configurations
CEeEX B3>~ MName: | STM32L476RG_NUCLEO Debug |
| type filter text | Main | %35 Debnggell = Startup‘ Ep Source| i=) Qommon|
C/C++ Application GDB Connection Settings ~
C/C++ Attach to Application (®) Autostart local GDB server Host name or IP address localhost
C/C++ Postmortem Debugger
C/C++ Remote Application () Connect to remote GDB server Port number 61234
GDB Hardware Debugging
Launch Group Debug probe | ST-LIMK (ST-LINK GDB server)
= Launch Group (Deprecated) GDB Server Command Line Options
v [STM32 Cortex-M C/C++ Applic T
E STM32L476RG_NUCLED Det
@® SWD O JTAG
S Y 066 CFF5651 54667 | Scan
Frequency (kHz): [0577FF495351885087172407
Access port: 0 - Cortex-M4 ~
Reset behaviour
Type: | Software system reset
Serial Wire Viewer (SWV)
[JEnable
Clock Settings
W
£ >
Revert Appl
Filter matched 9 of 10 items = L1
@
AN4989 Rev 3 115/118

Cortex®-M debug capabilities reminder AN4989

Appendix D Cortex®-M debug capabilities reminder

STM32 families debug capabilities depend on their Cortex®-M type.

Table 7. STM32 Series vs. debug capabilties

SGSrL'ZB: Cortextype | SWD JTAG ETM | SWO b'r"ea;smzs ::sr:t mco™
LO/FO MO/0+ Yes No No No 4 No 1
F1/L1/F2 M3 Yes Yes Yes@ | Yes 6 Yes 1
F3/F4/L4 M4 Yes Yes Yes@ | Yes 6 Yes 2()
F7/H7 M7 Yes Yes Yes@ | Yes 8 Yes 22)

Microcontroller Clock Output (refer to Section 8.2: Microcontroller clock output (MCO) on page 87)

2. Depends on package size. Check availability in the Pin Allocation Table in the related datasheet.

For more details, refer to the related Cortex® Arm® documentation.

D.1 Application notes index

Table 8. STM32 Series vs. debug capabilities

AN references Subject
AN5361 Dual core microcontrollers debugging
AN5286 Dual core microcontrollers debugging
ANS5421 Trustzone
ANS347 Trustzone
Note: Microcontroller Clock Output (refer to Section 8.2: Microcontroller clock output (MCO).

3

116/118 AN4989 Rev 3

AN4989 Revision history

Revision history

Table 9. Document revision history

Date Revision Changes
16-Jun-2017 1 Initial release.
29-Jun-2017 2 Added Table 1: Applicable products.
Updated:

— Section 1.2: Software versions

— Section 2.1.1: Hardware kits

— Figure 5: Discovery board example
Added:

— Section 1.1: General information

— Section 2.4.2: Wiki platform

— Section 2.4.3: Github

— Figure 2: Development tools overview
— Figure 4: STM32 Nucleo-144 structure
— Figure 15: STM32Cube monitor

— Figure 14: STM32Cube programmer

26-Jan-2021 3

3

AN4989 Rev 3 117/118

AN4989

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

3

118/118 AN4989 Rev 3

	Table 1. Applicable products
	1 Foreword
	1.1 General information
	1.2 Software versions
	1.3 Acronyms

	2 STM32 ecosystem outlines
	Figure 1. STM32 ecosystem overview
	2.1 Hardware development tools
	2.1.1 Hardware kits
	Figure 2. Development tools overview
	Figure 3. Nucleo-144, Nucleo-64 and Nucleo-32 boards
	Figure 4. STM32 Nucleo-144 structure
	Figure 5. Discovery board example
	Figure 6. EVAL board example
	Figure 7. 7X-NUCLEO-LPM01A

	2.1.2 ST-LINK probe
	Figure 8. ST-LINK, ST-LINK/V2, and ST-LINK/V2-ISOL stand-alone probes
	Figure 9. STLINK-V3SET
	Figure 10. On-board ST-LINK-V3 on Nucleo
	Table 2. ST-LINK software pack

	2.1.3 Alternative debugger probes

	2.2 Software development tools
	Figure 11. STM32 software development
	2.2.1 STM32CubeMX
	Figure 12. STM32CubeMX Configure and code generation

	2.2.2 STM32CubeIDE
	Figure 13. STM32CubeIDE

	2.2.3 Partner IDEs
	2.2.4 STM32CubeProgrammer
	Figure 14. STM32Cube programmer

	2.2.5 STM32CubeMonitor
	Figure 15. STM32Cube monitor

	2.3 Embedded software
	Figure 16. STM32CubeProjectList screenshot

	2.4 Information and sharing
	Figure 17. Get connected to STM32 world
	2.4.1 Documentation
	Table 3. STMicroelectronics documentation guide

	2.4.2 Wiki platform
	2.4.3 Github
	2.4.4 ST Community
	2.4.5 STM32 Education

	3 Compiling for debug
	3.1 Optimization
	3.1.1 IAR™ EWARM
	Figure 18. IAR™ EWARM Optimization option

	3.1.2 Keil® MDK-Arm µVision
	Figure 19. Keil® µVision Code Optimization option

	3.1.3 STM32CubeIDE
	Figure 20. STM32CubeIDE optimization level setting

	3.2 Debugging information
	3.2.1 IAR™ EWARM
	Figure 21. IAR™ EWARM Generate debug Information option

	3.2.2 Keil®-MDK-Arm µVision
	Figure 22. Keil® Debug Information option

	3.2.3 STM32CubeIDE
	Figure 23. STM32CubeIDE debug information option

	4 Connecting to the board
	4.1 SWD/JTAG pinout
	Figure 24. SWD pins PA13 and PA14 in Reset state under STM32CubeMX
	Figure 25. SWD pins PA13 and PA14 in Reserved but inactive state under STM32CubeMX
	Figure 26. SWD pins PA13 and PA14 in Active State under STM32CubeMX

	4.2 Reset and connection mode
	4.2.1 Presentation
	4.2.2 IAR™ EWARM
	Figure 27. Reset Mode in IAR8.10: screenshot

	4.2.3 Keil® MDK-Arm µVISION
	Figure 28. Connect and Reset option Keil®
	Figure 29. Keil® hotplug step1
	Figure 30. Keil® hotplug step2
	Figure 31. Keil® hotplug step3

	4.2.4 STM32CubeIDE
	Figure 32. Select Generator Options Reset Mode

	4.2.5 STM32CubeProgrammer
	Figure 33. STM32CubeProgrammer Reset mode
	Figure 34. STM32CubeProgrammer Connection mode

	4.3 Low-power case

	5 Breaking and stepping into code
	5.1 Debug support for timers, RTC, watchdog, BxCAN and I2C
	5.2 Debug performance
	5.2.1 IAR™ EWARM
	Figure 35. IAR™ EWARM ST-LINK SWD Speed setting

	5.2.2 Keil® MDK-Arm µVISION
	Figure 36. Keil® SWD Speed Setting

	5.2.3 STM32CubeIDE
	Figure 37. Access to Generator Options in STM32CubeIDE V2.0.0

	5.3 Secure platform limitation
	5.3.1 RDP
	Table 4. STM32 Series RDP protection extension

	5.3.2 PCROP

	6 Exception handling
	6.1 Default weak Handlers
	6.2 Custom Handlers
	Figure 38. Asking for Handler code generation
	Figure 39. Keil® Access to Show Caller Code in Contextual menu

	6.3 Trapping div/0 exception
	6.3.1 Cortex®-M0/M0+ case
	6.3.2 Cortex®-M3/4/7 case
	Figure 40. Cortex®-M3 SCB_CCR Description
	Figure 41. Cortex-M3 SCB_CFSR Description
	Figure 42. IAR™ EWARM exception handling
	Figure 43. Keil® System Control and Configure
	Figure 44. Keil® Fault Reports
	Figure 45. STM32CubeIDE SCB register access
	Figure 46. Fault Analyzer in STM32CubeIDE

	7 Printf debugging
	7.1 STM32 Virtual COM port driver
	Figure 47. Virtual COM port on Windows® PC

	7.2 Printf via UART
	Figure 48. USART Pinout configuration with STM32CubeMX
	Figure 49. USART2 setting with STM32CubeMX
	Table 5. STM32 USART vs. PC terminal WordLength example

	7.3 Printf via SWO/SWV
	Figure 50. SWO Pin configuration with STM32CubeMX
	Figure 51. Semihosting/SWO configuration with IAR™ EWARM
	Figure 52. IAR™ EWARM SWO Clock setting
	Figure 53. SWO configuration with Keil®
	Figure 54. Access to SWV in Keil®
	Figure 55. Enable SWD in STM32CubeIDE
	Figure 56. Enable SWV ITM Data Console in STM32CubeIDE
	Figure 57. Enable ITM stimulus Port 0 in STM32CubeIDE
	Figure 58. Start Trace button in STM32CubeIDE

	7.4 Semihosting
	7.4.1 IAR™ EWARM
	Figure 59. Semihosting configuration in IAR™ EWARM

	7.4.2 Keil® MDK-Arm µVISION
	7.4.3 STM32CubeIDE
	Figure 60. Properties for semihosting in STM32CubeIDE- Source Location
	Figure 61. Properties for semihosting in STM32CubeIDE- Librairies
	Figure 62. Properties for semihosting in STM32CubeIDE
	Figure 63. Semihosting in STM32CubeIDE – Debug configuration
	Figure 64. Semihosting in STM32CubeIDE – Startup
	Figure 65. Semihosting in STM32CubeIDE – Run

	8 Debug through hardware exploration
	8.1 Easy pinout probing with STMicroelectronics hardware kits
	8.2 Microcontroller clock output (MCO)
	8.2.1 Configuration with STM32CubeMX
	Figure 66. MCO pin selection in STM32CubeMX
	Figure 67. MCO alternate pin highlight exemple with L073
	Figure 68. MCO Multiplexer in STM32CubeMX Clock Configuration Pane

	8.2.2 HAL_RCC_MCOConfig
	8.2.3 STM32 Series differences
	Figure 69. STM32F4/F7 dual MCO capabilities

	9 Dual-Core microcontroller debugging
	10 From debug to release
	11 Troubleshooting
	Table 6. Troubleshooting

	Appendix A Managing DBGMCU registers
	A.1 By software
	Figure 70. DBMCU Register LL Library Functions
	Figure 71. DBGMCU_CR HAL Library Functions

	A.2 By debugger
	Figure 72. Access to DBGMCU register with IAR™ EWARM
	Figure 73. EWARM C-SPY® Macro script setting
	Figure 74. Accessing DBGMCU register in Keil® MDK-Arm µVision (1/2)
	Figure 75. Accessing DBGMCU register in Keil® MDK-Arm µVision (2/2))
	Figure 76. Keil® Initialization script setting
	Figure 77. Access to Generator Options in STM32CubeIDE V2.0.0
	Figure 78. Generator Options debug MCU in STM32CubeIDE
	Figure 79. Access to DBGMCU settings with STM32CubeIDE V1.3.0
	Figure 80. Runtime R/W access to DBGMCU register with SSTM32CubeIDE

	Appendix B Use Nucleo “cuttable” ST-LINK as stand- alone VCP
	Figure 81. ST-LINK cuttable part of Nucleo
	Figure 82. Using ST-LINK stand-alone part of Nucleo-L476RG as VCP
	Figure 83. Virtual COM port on PC side

	Appendix C Managing various targets on the same PC
	Figure 84. STM32CubeProgrammer target selection pick list
	Figure 85. Getting target ST-LINK S/N from the console
	Figure 86. IAR™ EWARM Debug Probe Selection pop-up window
	Figure 87. IAR™ EWARM Debug Probe Selection with nickname
	Figure 88. Probe selection prompt setting on IAR™ EWARM
	Figure 89. Keil® ST-LINK selection
	Figure 90. Error message for multiple ST-LINK detected in STM32CubeIDE
	Figure 91. Forcing specific ST-LINK S/N with STM32CubeIDE with OpenOCD option
	Figure 92. Forcing specific ST-LINK S/N with STM32CubeIDE with ST-LINK GDB server

	Appendix D Cortex®-M debug capabilities reminder
	Table 7. STM32 Series vs. debug capabilties
	D.1 Application notes index
	Table 8. STM32 Series vs. debug capabilities

	Revision history
	Table 9. Document revision history

